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GENERALIZATION OF CONTINUED FRACTIONS. І 

D. I. Bodnar1  and  R. A. Zators’kyi2 UDC 517.52 

We constructed a new algebraic object, namely, recursion fractions of the  n th order that are  n -dimen-
sional generalizations of continued fractions.  For the representation and the study of such fractions, we 
used paradeterminants and triangular matrices. 

At present, various approaches to the generalization of calculation of rational approximations of continued 
fractions are known [1–3, 6].  Among them, the historically first approach is the matrix one (Euler, Jacobi, Poin-
caré, Brunn, Perron, Bernstein, and Pustyl’nikov).  Another approach is based on linear homogeneous forms 
(Dirichlet, Hermite, Klein, Minkowski, Voronoi, Skubenko, and Arnol’d).  A number of algorithms were pro-
posed by the analysts Hurwitz and Sekeresh (on the basis of generalizations of Farey fractions), Skorobagat’ko 
(branching continued fractions), Syavavko (integral continued fractions), etc. 

An important generalization of continued fractions was proposed by Fürshtenau [7] as early as 1874.  Later 
on, some sufficient conditions of convergence of rational approximations of Fürshtenau fractions were studied 
by Krukovs’kyi [5].  However, despite the natural character and simplicity of this generalization, it remained 
unnoticed or was forgotten. 

The important requirements to a generalization of continued fractions are as follows: 

 – construction of an algebraic object convenient in use, whose representation recalls the representation 
of continued fractions and allows one to naturally introduce the notion of their order and to separate a 
class of periodic objects as generalizations of the periodic continued fractions; 

 – the algorithm of calculation of the values of rational truncations of these mathematical objects must be 
simple to realize and efficient; 

 – by analogy with periodic continued fractions, arbitrary periodic algebraic objects of higher orders 
must serve as representations of some algebraic irrationalities of higher orders. 

The representation used by Fürshtenau in the generalization of fractions is not convenient for the operation 
with such fractions.  We propose a new representation for Fürshtenau fractions, by using the parapermanents of 
triangular matrices.  It is more descriptive and allows one to include the calculation apparatus for triangular ma-
trices to the study of these fractions [4].  In addition, this approach allows us to naturally introduce the notion of 
order of a fraction and a periodic fraction and to show that periodic fractions of higher orders represent irration-
alities of higher orders. 

1.  Auxiliary Notions and Assertions 

Recall some information from [4] on the parapermanents of triangular matrices.  Let a field  K   be given. 
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Definition 1.  A triangular table of elements from a field  K   of the form 

 

 

A =

a11
a21 a22
… … �
an1 an2 … ann n

 (1) 

is called a triangular matrix, and the number  n   is its order. 

In correspondence to each element  aij   of matrix (1), we put  i − j +1  elements  aik ,  k = j,…, i ,  called de-

rivative elements of the matrix that are generated by the key element  aij .  We denote the product of all deriva-

tive elements generated by the element  aij   by   {aij }  and call a factorial product of the key element  aij ,  i.e., 

 

 
{aij } = aik

k= j

i

∏ . 

Definition 2.  A collection of elements of matrix (1) is called the normal collection of key elements of this 
matrix if they generate the set of derivative elements of power  n ,  such that each two elements do not belong to 
the same column of this matrix. 

By   P(n) ,  we denote the set of all ordered partitions of a natural number  n   into a sum of natural terms.  It 

is known that   P(n) = 2n−1 .  There exists the bijective correspondence between the normal collections of key 
elements of matrix (1) and the ordered partitions from the set   P(n): 

 
 
(n1,n2 ,…,nr ) ↔ (aN1 ,N0 +1,aN2 ,N1+1,…,aNr ,Nr−1+1 ), 

where 

 N0 = 0 ,      Ns = ni
i=1

s

∑ ,       s = 1, 2,…, r . 

Definition 3.  The parapermanent of the triangular matrix (1) is the element  

 

   

pper (A) =

a11
a21 a22
… … �
an1 an2 … ann

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

n

= {ai(s ), j (s )}
s=1

r

∏
(α1 ,α2 ,…,αr )∈P (n)

∑  

of the field  K ,  where  ai(s ), j (s )  is a key element corresponding to the  s th component of a partition  α =  

 (α1,α2 ,…,αr ). 

Definition 4.  In correspondence to each element  aij  of the triangular matrix  A   given by formula (1), we 

put the triangular matrix 
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Rij (A) =

a jj

a j+1, j a j+1, j+1

… … �
aij ai, j+1 … aii i− j+1

. 

We call it an  aij -part of the given triangular matrix. 

We assume that 

 pper (R01(A)) = pper (Rn,n+1(A)) = 1. 

The parapermanents can be expanded in elements of the first column or the last row of a triangular matrix, 
respectively, by the formulas 

 
 
pper (A) = {ar1} ⋅pper (Rn, r+1 )

r=1

n

∑ = {ans } ⋅pper (Rs−1,1 )
s=1

n

∑ . 

2.  Definition of Recursion Fractions 

Definition 5.  A recursion fraction of the  n th order is the triangular matrix 

 

 

α =

a11
a22
a12

a12

… … �
an−1,n−1

an−2,n−1

an−2,n−1

an−3,n−1
… a1,n−1

an,n

an−1,n

an−1,n

an−2,n
…

a2,n

a1,n
a1,n

0
an,n+1

an−1,n+1
…

a3,n+1

a2,n+1

a2,n+1

a1,n+1
a1,n+1

0 0 …
a4,n+2

a3,n+2

a3,n+2

a2,n+2

a2,n+2

a1,n+2
a1,n+2

… … … … … … … �

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥∞

,  (2) 

where  aij   are natural numbers. 

Definition 6.  The  mth rational truncation of a fraction  α   is the rational number 

 αm =
Pm

Qm
,  (3) 

where  Pm ,  Qm   are the parapermanents of relevant triangular matrices: 
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Pm =

a11
a22
a12

a12

… … �
an,n

an−1,n

an−1,n

an−2,n
… a1,n

0
an,n+1

an−1,n+1
…

a2,n+1

a1,n+1
a1,n+1

0 0 …
a3,n+2

a2,n+2

a2,n+2

a1,n+2
a1,n+2

… … … … … … �

0 0 … 0
an,m

an−1,m

an−1,m

an−2,m
… a1,m

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥m

 , (4) 

 

 

Qm =

a12
a23
a13

a13

… … �
an−1,n

an−2,n

an−2,n

an−3,n
… a1,n

an,n+1

an−1,n+1

an−1,n+1

an−2,n+1
…

a2,n+1

a1,n+1
a1,n+1

0
an,n+2

an−1,n+2
…

a3,n+2

a2,n+2

a2,n+2

a1,n+2
a1,n+2

… … … … … … �

0 0 … 0
an,m

an−1,m

an−1,m

an−2,m
… a1,m

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥ m−1

 . (5) 

We denote the ratio of these parapermanents by 

 

 

Pm

Qm
=

a11
a22
a12

a12

… … �
an,n

an−1,n

an−1,n

an−2,n
… a1,n

0
an,n+1

an−1,n+1
…

a2,n+1

a1,n+1
a1,n+1

0 0 …
a3,n+2

a2,n+2

a2,n+2

a1,n+2
a1,n+1

… … … … … … �

0 0 … 0
an,m

an−1,m

an−1,m

an−2,m
… a1,m

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥m

. 
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If the limit 

 lim
m→∞

Pm

Qm
 

exists, we call it the value of the recursion fraction  α .  Expanding parapermanents (4) and (5) in elements of the 
last row, we obtain linear recursion relations of the  n th order, 

  Pm = a1mPm−1 + a2mPm−2 +…+ anmPm−n , m = 1,2,…, 

  Qm = a1mQm−1 + a2mQm−2 +…+ anmQm−n , m = 1,2,…, 

where  

 Pi =
1, i = 0,

0, i < 0,
⎧
⎨
⎩

Qi =
1, i = 1− n,

0, 2 − n ≤ i ≤ 0,
⎧
⎨
⎩

an1 = 1, 

which present an efficient algorithm of calculation of the rational truncations (3) of the  n -order recursion frac-
tions (2).  This implies that a recursion fraction of the second order for  a1i = qi > 0 ,  a2i = pi   has the form 

 

 

q1                  
p2
q2

q2

0
p3
q3

q3

0 0
p4
q4

q4

… … … … �
0 0 0 0 … qm
… … … … … … �

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥∞

 

and is another representation of the continued fraction [8, 9] 

 q1 + K
m=2

∞ pm

qm
. (6) 

Definition 7.  The  n th order recursion fraction (2) is called  k -periodic if  ai,rk+ j = ai, j ,   i = 1,2,…,n ,  

 j = 1,2,…, k . 

Definition 8.  Two  n th order recursion fractions are called identical if the  mth rational truncations of 
both fractions are identical for all   m = 1,2,…. 

Definition 9.  The  n th order recursion fraction (2) is called an ordinary recursion fraction if 

 
 
ann = an,n+1 = an,n+2 = … = 1. 
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3.  Properties of Recursion Fractions 

Let us set the recursion fraction 

 

 

α =

q1
p2
q2

q2

r3
p3

p3
q3

q3

0
r4
p4

p4
q4

q4

… … … … �
0 0 0 0 … qn−2

0 0 0 0 …
pn−1
qn−1

qn−1

0 0 0 0 …
s ⋅ rn

s ⋅ pn

s ⋅ pn

s ⋅qn
s ⋅qn

0 0 0 0 … 0
s ⋅ rn+1
s ⋅ pn+1

s ⋅ pn+1
qn+1

qn+1

0 0 0 0 … 0 0
s ⋅ rn+2
pn+2

pn+2
qn+2

qn+2

… … … … … … … … … … �

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
∞

. 

Theorem 1.  For any recursion fraction of the  k th order, there exists an ordinary recursion fraction of the  
k th order that is equal to it. 

Proof of this theorem will be illustrated for  k = 3 and  k = 4 .  (In the general case, the proof is analogous.)  
First of all, we note that the value of the parameter  s   does not affect the value of a recursion fraction of the 
third order, because this recursion fraction is considered as the formal ratio of the parapermanents of two infinite 
triangular matrices, in which  s   is cancelled.  Hence, the value of the parameter  s   can be chosen according to 
the described procedure so that the equality  srn = 1  is satisfied.  Moreover, by performing successively this 
procedure for elements   r3, r4 ,…, rk   of a recursion fraction, we determine the values of the corresponding pa-

rameters   s3, s4 ,…, sk .  To this end, it is sufficient to successively solve the equations 

  s3r3 = s3s4r4 = s3s4 s5r5 = s4 s5s6r6 = s5s6s7r7 = … = sk−2sk−1skrk = 1 

for the variables  s3 , s4 ,  …sk : 

 
 
s3t =

r5r8 ⋅… ⋅ r3t−1
r3r6 ⋅… ⋅ r3t

, s3t+1 =
r3r6 ⋅… ⋅ r3t

r4r7 ⋅… ⋅ r3t+1
, s3t+2 =

r4r7 ⋅… ⋅ r3t−2
r5r8 ⋅… ⋅ r3t−1

,       t = 1,2,…. 

By reducing the recursion fractions of the fourth order to ordinary fourth-order recursion fractions, it is nec-
essary to use the equalities 
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t4 k =

s7 ⋅… ⋅ s4 k−1
s4 s8 ⋅… ⋅ s4 k

, t4 k+1 =
s4 s8 ⋅… ⋅ s4 k

s5s9 ⋅… ⋅ s4 k+1
, 

 
 
t4 k+2 =

s5s9 ⋅… ⋅ s4 k+1
s6s10 ⋅… ⋅ s4 k+2

, t4 k+3 =
s6s10 ⋅… ⋅ s4 k+2

s7 ⋅… ⋅ s4 k+3
, k = 1,2,…. 

Theorem 2.  If there exists a finite nonzero limit for the  mth rational truncation of the second-order 1-
periodic recursion fraction 

 

 

a1               

a2
a1

a1

0
a2
a1

a1

… … … �

0 0 …
a2
a1

a1

0 0 … 0
a2
a1

a1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

m

 (7) 

as  m →∞ ,  then its value is a real root of the quadratic equation  x2 = a1x + a2 . 

Proof.  The assertion of this theorem follows directly from the fact that the continued fractions (6) for  

 q1 =  q2 =… =  a1,   p2 = p3  =… =  a2  are another representation of the recursion fraction (7). 

A 1-periodic recursion fraction of the third order takes the form 

 

 

a1              

a2
a1

a1

a3
a2

a2
a1

a1

0
a3
a2

a2
a1

a1

0 0
a3
a2

a2
a1

a1

… … … … … �

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
∞

. (8) 

Theorem 3.  If there exists a finite nonzero limit for the  mth rational truncation of the third-order 1-
periodic recursion fraction (8) as  m →∞ ,  then such third-order recursion fraction is a representation of a real 
root of the cubic equation 

 x3 = a1x2 + a2 x + a3.  (9) 
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Proof.  By expanding the parapermanent which is the numerator of the  m th rational truncation in elements 
of the first column, we obtain the equality 

 Pm = a1Pm−1 + a2Pm−2 + a3Pm−3 . 

Since  Qm = Pm−1,   m = 1,2,… ,  we have 

 
Pm

Qm
= a1 +

a2
Pm−1
Qm−1

+
a3

Pm−1
Qm−1

Pm−2
Qm−2

. (10) 

Let 

 lim
m→∞

Pm

Qm
= x ≠ 0. 

Then, by passing to the limit as  m →∞   in equality (10), we obtain an equation equivalent to Eq. (9): 

 x = a1 +
a2
x
+

a3

x2
. (11) 

We note that Eq. (11) can be written in the form 

 x = a1 +
a2 +

a3
x

x
. 

Using the relation 

 
 
xn = a1 +

a2 +
a3

xn+1
xn+1

, n = 1,2,…,  

and the corresponding successive substitutions, we obtain the expression 

 

 

x = x1 = a1 +

a2 +
a3

a1 +
a2 +

a3
a1 +…

a1 +
a2 +…
a1 +…

a1 +

a2 +
a3

a1 +
a2 +…
a1 +…

a1 +
a2 +

a3
a1 +…

a1 +
a2 +…
a1 +…

. (12) 
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The same multilevel fractions can be constructed with the help of two sequences of equalities, 

 

 
xn = a1 +

yn

xn+1

⎧
⎨
⎩

⎫
⎬
⎭n=1,2,…

, yn = a2 +
a3

xn+1

⎧
⎨
⎩

⎫
⎬
⎭n=1,2,…

, 

and the corresponding substitutions [5].  Formulas (12) are not convenient for their analysis and practical needs.  
Therefore, we will use the corresponding third-order recursion fractions equal to them. 

4.  2-Periodic and 3-Periodic Third-Order Recursion Fractions 

Let us consider the 2-periodic third-order recursion fraction 

 

 

q1              

p2
q2

q2

r1
p1

p1
q1

q1

0
r2
p2

p2
q2

q2

0 0
r1
p1

p1
q1

q1

… … … … … �

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

∞

. (13) 

We now expand the numerator of the  n th rational truncation  
Pn

Qn
  of this recursion fraction in elements of the 

first column: 

 
Pn

Qn
=

q1Qn + p2Pn−2 + r1Qn−2
Qn

= q1 +
p2
Qn

Pn−2

+
r1

Qn
Pn−2

Pn−2
Qn−2

. 

Expanding the denominator  Qn   of this rational truncation in elements of the first column, we obtain the equali-

ties 

 
Qn

Pn−2
=

q2Pn−2 + p1Qn−2 + r2Pn−4
Pn−2

= q2 +
p1

Pn−2
Qn−2

+
r2

Pn−2
Qn−2

Qn−2
Pn−4

. 

Assume that the following finite nonzero limits exist: 

 lim
n→∞

Pn

Qn
= x       and      lim

n→∞

Qn

Pn−2
= y . 
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Then 

 x = q1 +
p2
y

+
r1
yx

, y = q2 +
p1
x
+

r2
xy

. 

This system of equations yields the cubic equation 

 (q2 p2 + r2 )x3 + (r1q2 − p2q1q2 − p2
2 + p1 p2 − 2q1r2 )x2 + ( p1r1 − p1 p2q1 

  − q1q2r1 − 2 p2r1 + q1
2r2 )x − (r1

2 + q1 p1r1 ) = 0.  (14) 

Theorem 4.  Let  
Pn

Qn
  be the  n th rational truncation of the periodic recursion equation (13), and let the 

nonzero limits 

 lim
n→∞

Pn

Qn
= x       and      lim

n→∞

Qn

Pn−2
= y  

exist.  Then  x   is a real root of the cubic equation (14). 

Analogously, we can show that the 3-periodic third-order recursion fractions represent the real root of some 
cubic equation, etc. 

Example.  In the 2-periodic third-order recursion fraction (13), we take  

 q1 = 5, q2 = − 3, p1 = 1, p2 = − 2, r1 = 3, r2 = −1. 

Then 

 
P0
Q0

= 5
1

= 5,
Q2
P0

=
−14

5
= − 2.8,

P1
Q1

=
−17
− 3

= 5.(6),
Q3
P1

= 47
−17

≈ − 2.764 , 

 
P2
Q2

=
− 77
−14

= 5.5,
Q4
P2

= 212
− 77

≈ − 2.7532,
P3
Q3

= 260
47

≈ 5.5319 , 

 
Q5
P3

=
− 716
260

≈ − 2.753846,
P4
Q4

= 1172
212

≈ 5.5283,
Q6
P4

=
− 3227
1172

≈ − 2.7534129, 

 
P5
Q5

=
− 3959
− 716

≈ 5.529329,
Q7
P5

= 10901
− 3959

≈ − 2.75347309, 

 
P6
Q6

=
−17843
− 3227

≈ 5.529284,
Q8
P6

= 49130
−17843

≈ − 2.75346076, 
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P7
Q7

= 60275
10901

≈ 5.52930923,
Q9
P7

=
−165965

60275
≈ − 2.75346329 , 

 
P8
Q8

= 271655
49130

≈ 5.52930999,
Q10
P8

=
− 747992
271655

≈ − 2.753463032 , 

 
P9
Q9

=
− 917672
−165965

≈ 5.529310396. 

The fraction is a representation of the root 

 x = 7
3
+ 1

3
553 + 2

15
5523 ≈ 5.52931047609  

of the cubic equation 

 5x3 − 35x2 + 45x − 24 = 0 . 
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