
СІТ’2023, Тернопіль, 30 листопада 2023

12

УДК 004.4

INTELLECTUALIZED SYSTEM OF ANALYSIS OF THE QUALITY OF SOFTWARE

SYSTEMS

Valerii Krutko1) , Iryna Spivak2), Svitlana Krepych3), Yurii Dzyga4)

West Ukrainian National University
1)master; 2-3) associate professor; 4) phd. student

І. Problem statement

 The importance of high-quality software in the success of a product is widely acknowledged. Despite

the fact that bugs and mistakes in applications are something we all are quite aware about, some of them can

cause severe repercussions, impacting security, reliability, and user satisfaction [1-3]. Hence, ensuring the

high quality of a software product is a primary objective to be reached during the development stage. In

terms of cost reduction and time efficiency in development, early identification of mistakes is crucial. In

iterative development, the mistakes fixing complexity increases over time, elevating the cost, and reducing

the probability of being fixed correctly (without introducing new mistakes). It is necessary to develop a

model for determining the general indicator of the reliability of the software system, taking into account its

complexity [3-6].

ІІ. Purpose

 Currently, various reliability models are used to address the issue of evaluating the reliability of

software systems. However, these models are mostly adaptations of hardware system reliability models with

minimal modifications, which have simplifications and assumptions that significantly limits their

applicability to actual software products. This paper aims to suggest a method for assessing software

reliability that considers the occurrence of failures rather than mistakes, as well as the complexity and

structure of the software product.

ІІІ. Main part

 A flowchart of the approach to assessing the reliability of software systems based on a graph model of

method dependence is shown in figure 1.

 Software will be implemented in the

form of plug-in for the integrated development

environment IntelliJ IDEA from JetBrains. The

application itself does not have a program

interface, as all functions are implemented

using the IDE’ context menu. The program

code of the plugin is written in the Kotlin

programming language, since the API of the

IntelliJ IDEA environment is written in this

language.

 As can be seen from Figure 1, the log is

a key element of the analysis because it is used

to build a graph model of the software system,

as well as to fill in the matrices required for

reliability calculation.

Despite the fact that we have access to the

method hierarchy via IDE API, this

information is not enough to build a graph.

This is because this hierarchy of methods does

not contain any informatoin about conditional

statements and various checks that may be

present in the program code. The task of

estimating transition probabilities based on

code analysis is extremely non-trivial and

 Figure1 – Suggested approach action sequence cannot be solved algorithm. Within the

СІТ’2023, Тернопіль, 30 листопада 2023

13

suggested approach, transition probabilities are calculated statistically as the ratio of the number of child

method invocations to the number of invocations of the parent method based on information from log.

 It is convenient to represent the structure of the designed software in the form of a use case diagram.

Figure 2 shows the capabilities of the system, as well as the actions that the user can perform using the

graphical user interface.

 An ability to manually

include and exclude methods

from processing allows to fine-

tune which parts of the software

will be analyzed. In addition,

there are applications that have

not one, but many entry points,

for example, web applications

written using the

SpringFramework, where each

individual method of the

controller is executed

asynchronously and may not

interact with others, so this

approach will allow to perform

the analysis of the reliability of

individual modules [7,8].

 Also, as it shown in Figure

2, plugin can be configured to

ignore some exceptions. This

allows you to ignore exceptions

 Figure 2 – Use case diagram that are not the result of any

mistake, but caused by incorrect input data, temporary unavailability of external services, etc.

Conclusions

 This paper investigates an approach to assessing the reliability of software systems based on a graph

model of method dependencies. This approach includes elements of structural analysis of application source

code, followed by building a map of the relationships between methods, as well as determining stochastic

indicators of their reliability. Due to the fact that this approach takes into account the architecture of the

program under study and operates with actual reliability indicators of methods, it should provide higher

accuracy than systems that predict the reliability of software systems in accordance with various probability

distribution functions.

References
1. ISO/IEC 25010:2011, Systems and software engineering — Systems and software Quality Requirements and Evaluation

(SQuaRE) — System and software quality models, Standard, International Organization for Standardization, 2011.

2. Крепич С.Я. Моделювання та забезпечення функціональної придатності статичних систем методами аналізу інтервальних

даних/ дисертація на здобуття ступ. к.т.н. – Тернопіль, 2016. 166с

3. V. V. Vyshnivskyi, V. V. Vasylenko, M. P. Hnidenko, Osnovy nadiinosti ta diahnostyky informatsiinykh system.

Navch.posibn.[Fundamentals of reliability and diagnostics of information systems. Study guide.], volume 188, FOP Huliaieva V.

M., 2020.

4. Крепич С.Я. Програмний комплекс оцінювання функціональної придатності пристроїв при заданих допустимих

значеннях вихідних характеристик та допусків на параметри їх елементів. Сучасні комп‘ютерні інформаційні технології:

Матеріали V Всеукраїнської школи-семінару молодих вчених і студентів АСІТ‘2015. – Тернопіль: ТНЕУ, 2015. – С. 23-5.

5. I. Spivak, S. Krepych, S. Budenchuk. "Methods and means of expert evaluation of software systems on the basis of interval data

analysis", in Proceedings of 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and

Computer Engineering, ТCSET ’18, LvivSlavske, Ukraine, 2018.

6. Крепич С.Я., Співак І.Я. Оцінювання часової складності застосування методу Монте-Карло та інтервального аналізу

даних для встановлення функціональної придатності РЕК. Сучасні комп’ютерні інформаційні технології: Матеріали ІІІ

Всеукраїнської школи-семінару молодих вчених і студентів АСІТ’2013. – Тернопіль: Економічна думка, 2013. – С.36-37.

7. Стахів П.Г., Дивак М.П., Крепич С.Я. Синтез радіо-електронних кіл при заданизх обмеженях на вихідні характеристики

та за умов заданих допусків на параметри елементів. Вимірювальна та обчислювальна техніка в технологічних процсах.

Вип.3. 2014, с.39-47

8. I.Spivak, S.Krepych, R.Krepych, A.Bayurskii, "Construction of a criterion for assessing the level of objectivity of experts based on

a modified interval expert appraisal method", in IEEE International Scientific-Practical Conference Problems of

Infocommunications, Science and Technology (PIC S&T),2019, pp.311-314

