VIIK 004.4

INTELLECTUALIZED SYSTEM OF ANALYSIS OF THE QUALITY OF SOFTWARE
SYSTEMS

Valerii Krutko? , Iryna Spivak?, Svitlana Krepych®, Yurii Dzyga®
West Ukrainian National University
Dmaster; 2% associate professor; 4 phd. student

I. Problem statement

The importance of high-quality software in the success of a product is widely acknowledged. Despite
the fact that bugs and mistakes in applications are something we all are quite aware about, some of them can
cause severe repercussions, impacting security, reliability, and user satisfaction [1-3]. Hence, ensuring the
high quality of a software product is a primary objective to be reached during the development stage. In
terms of cost reduction and time efficiency in development, early identification of mistakes is crucial. In
iterative development, the mistakes fixing complexity increases over time, elevating the cost, and reducing
the probability of being fixed correctly (without introducing new mistakes). It is necessary to develop a
model for determining the general indicator of the reliability of the software system, taking into account its
complexity [3-6].

II. Purpose
Currently, various reliability models are used to address the issue of evaluating the reliability of
software systems. However, these models are mostly adaptations of hardware system reliability models with
minimal modifications, which have simplifications and assumptions that significantly limits their
applicability to actual software products. This paper aims to suggest a method for assessing software
reliability that considers the occurrence of failures rather than mistakes, as well as the complexity and
structure of the software product.

III. Main part
A flowchart of the approach to assessing the reliability of software systems based on a graph model of
method dependence is shown in figure 1.

Software will be implemented in the

Begin
[] form of plug-in for the integrated development

v

Program source code
analysis

v

Creating 'Breakpoints’ for all available
methods

v

Executing the program

v

Parsing the log, determining the transition
probabilities and the probability of failure-
free operation of the methods

+

Building a graph representation of the
software system

v

Failure-free operation probability
calculation

v

[

End

Figurel — Suggested approach action sequence

environment IntelliJ IDEA from JetBrains. The
application itself does not have a program
interface, as all functions are implemented
using the IDE’ context menu. The program
code of the plugin is written in the Kotlin
programming language, since the API of the
IntelliJ IDEA environment is written in this
language.

As can be seen from Figure 1, the log is
a key element of the analysis because it is used
to build a graph model of the software system,
as well as to fill in the matrices required for
reliability calculation.
Despite the fact that we have access to the
method hierarchy via IDE API, this
information is not enough to build a graph.
This is because this hierarchy of methods does
not contain any informatoin about conditional
statements and various checks that may be
present in the program code. The task of
estimating transition probabilities based on
code analysis is extremely non-trivial and
cannot be solved algorithm. Within the

CIT’2023, TepHoninb, 30 aucmonada 2023

12

suggested approach, transition probabilities are calculated statistically as the ratio of the number of child
method invocations to the number of invocations of the parent method based on information from log.

It is convenient to represent the structure of the designed software in the form of a use case diagram.
Figure 2 shows the capabilities of the system, as well as the actions that the user can perform using the
graphical user interface.

An ability to manually
include and exclude methods

Include/exclude from processing allows to fine-

methods to be tune which parts of the software

processed will be analyzed. In addition,

.- by algorithm there are applications that have

soend® not one, but many entry points,

o for example, web applications

Set calculation Written using the
parameters SpringFramework, where each

« individual method of the
/ . controller is executed
onds” asynchronously and may not

Set exceptions interact with others, so this
to be ignored by approach will allow to perform
User 2l the analysis of the reliability of
Calculate app individual modules [7,8].

fail-free operation Also, as it shown in Figure
probabilty 2, plugin can be configured to
ignore some exceptions. This

allows you to ignore exceptions

Figure 2 — Use case diagram that are not the result of any

mistake, but caused by incorrect input data, temporary unavailability of external services, etc.
Conclusions

This paper investigates an approach to assessing the reliability of software systems based on a graph
model of method dependencies. This approach includes elements of structural analysis of application source
code, followed by building a map of the relationships between methods, as well as determining stochastic
indicators of their reliability. Due to the fact that this approach takes into account the architecture of the
program under study and operates with actual reliability indicators of methods, it should provide higher
accuracy than systems that predict the reliability of software systems in accordance with various probability
distribution functions.

References

1. ISO/IEC 25010:2011, Systems and software engineering — Systems and software Quality Requirements and Evaluation
(SQuaRE) — System and software quality models, Standard, International Organization for Standardization, 2011.

2. Kpermmu C.51. MonemoBanHs Ta 3a0e3nedeHHst (pyHKI[IOHATBHOT MPUIATHOCTI CTATHYHUX CUCTEM METOJaMH aHANli3y IHTepBAILHUX
AHWX/ JECepTalis Ha 3M00yTTS CTYI. K.T.H. — TepHorminb, 2016. 166¢

3. V. V. Vyshnivskyi, V. V. Vasylenko, M. P. Hnidenko, Osnovy nadiinosti ta diahnostyky informatsiinykh system.
Navch.posibn.[Fundamentals of reliability and diagnostics of information systems. Study guide.], volume 188, FOP Huliaieva V.
M., 2020.

4. Kpennu C.S. IlporpamMHuii KOMIUIEKC OI[iHIOBaHHS (YHKIIOHATEHOT NPHIATHOCTI NMPUCTPOIB MpPU 3aJaHUX JOMYCTUMHX
3HAUEHHSX BHUXITHUX XapaKTePHCTHK Ta JOIyCKiB Ha IMapaMeTpH ix eneMeHTiB. CydacHi KOMII‘IOTepHi iHpopManiiiHi TEXHOJIOTII:
Marepiamu V Beeykpaincbkoi mkonu-ceMinapy Monoaux BueHuX i cryneHTiB ACIT2015. — Tepuonins: THEY, 2015. — C. 23-5.

5. 1. Spivak, S. Krepych, S. Budenchuk. "Methods and means of expert evaluation of software systems on the basis of interval data
analysis"”, in Proceedings of 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and
Computer Engineering, TCSET ’18, LvivSlavske, Ukraine, 2018.

6. Kpermmu C.S., CniBak [.5I. OuiHroBaHHs 4acoBOl CKJIaJHOCTI 3acTocyBaHHs Merony MouTe-Kapno Ta iHTepBalbHOTO aHamizy
JaHUX Uil BCTaHOBJIEHHs QyHkuioHanbHoi npuaatHocti PEK. Cydachi koM ioTepHi iHpopmariitai TexHomorii: Matepianu 111
BeeykpaiHChKOT IKOIHM-ceMiHapy MoJoauX BueHHX i ctyaeHTiB ACIT’2013. — TepHomnins: Exonomiuna nymka, 2013. — C.36-37.

7. Craxis ILI"., TuBak M.II., Kperuu C.f. Cunte3 panio-eJeKTpOHHHX KiJl PU 33/laHU3X OOMEKEHAX Ha BUXIIHI XapaKTEPUCTUKH
Ta 3a YMOB 3aJIlaHUX IIOHchiB Ha mapaMeTpu €JIEMEHTIB. BI/IMipIOBaJ'H)Ha Ta 00YHCIIIOBAIbHA TEXHIKA B TEXHOJIOTTYHUX Tporcax.
Bum.3. 2014, ¢.39-47

8. 1.Spivak, S.Krepych, R.Krepych, A.Bayurskii, "Construction of a criterion for assessing the level of objectivity of experts based on
a modified interval expert appraisal method”, in IEEE International Scientific-Practical Conference Problems of
Infocommunications, Science and Technology (PIC S&T),2019, pp.311-314

CIT’2023, TepHoninb, 30 aucmonada 2023 13

