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ESTIMATES OF THE RATE OF POINTWISE AND UNIFORM CONVERGENCE FOR  
ONE-PERIODIC BRANCHED CONTINUED FRACTIONS OF A SPECIAL FORM 

D. I. Bodnar  and  M. M. Bubnyak  UDC 517.52 

A new formula for the difference between two approximants of one-periodic branched continued frac-
tions of a special form is constructed.  An estimate for the rate of pointwise and uniform convergence of 
fractions of this sort is obtained with the help of this formula. 

A continued fraction 

 
 
1+

n=1

∞

D an
1 = 1+

a1
1 +

a2
1 + 

, (1) 

for which the sequence of elements an  is k -periodic ( akn+ p = ap  for all n  ∈N , 1 ≤ p < k ), is called k -peri-
odic,  k ∈N .  The 1-periodic fractions were studied by L. Euler and D. Bernoulli.  The k -periodic fractions were 
considered by E. Kahl, E. Galois, W. Leighton, O. Perron, R. Lane, H. Wall, W. Jones, W. Thron, H. Waadeland, 
L. Lorentzen, et al.  The surveys of the corresponding results can be found in [3–7, 9]. 

We now consider a linear-fractional mapping  t(ω) = aω + b
cω + d ,  where  a,  b,  c , d ,  ω ∈C   are such that  

ab − dc ≠ 0 ,  c ≠ 0 .  Assume that the mapping  t(ω)   has two fixed points  x   and  y .  The point  x   is called 

attracting if  t n (ω) = t(t n−1(ω))→ x   as  n→∞   for all  ω ≠ y .  Then  y   is a repelling point of this mapping.  
For a 1-periodic continued fraction 

 
 
1+

c1
1 +

c1
1 +…

, (2) 

where   c1 ∈C ,  we have 

 t(ω) = 1+
c1
ω , x =

1+ 1+ 4c1
2 , y =

1− 1+ 4c1
2 . (3) 

It is worth noting that, here and in what follows, we take the principal branch  ( 1 = 1)  of the square roots. 
It is known [5–9] that fraction (2) is convergent in the region 

 
 
G = z ∈C: arg z + 1
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 Fig. 1 

x ≠ y ,  x ≠ 0 ,  and its n th approximant is equal to 

 fn = 1+
k=1

n

D c1
1 = xn+2 − yn+2

xn+1 − yn+1
= x

1− y
x

⎛
⎝⎜

⎞
⎠⎟
n+2

1− y
x

⎛
⎝⎜

⎞
⎠⎟
n+1 , n ≥ 0, f0 = 1 . (5) 

Lemma 1.  Let the element  c1   of fraction (2) belong to a closed domain 

 
 
D = z ∈C: arg z + 1

4
⎛
⎝⎜

⎞
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≤ π − ε, δ ≤ z + 1

4 ≤ Δ⎧
⎨
⎩

⎫
⎬
⎭

, (6) 

where  0 < ε < π ,  0 < δ < Δ   (Fig. 1).  Then: 

 (і) fraction (2) uniformly converges in the domain  D   to the attracting point  x   given by relation (3); 

 (іі) the following estimate of the rate of convergence is true: 

 fn − x ≤ Lρn+1, n ≥ 0 , (7) 

 ρ =
1− 4 d sin ε2 + 4d

1+ 4 d sin ε2 + 4d
. (8) 

Moreover,  d = δ   for  δΔ ≤ 1
16   and  d = Δ   for  δΔ > 1

16 ,  L = 2 Δ
1− ρ . 
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Proof.  Since  D ⊂ G ,  relation (5) implies that 

 fn − x = xn+2 − yn+2

xn+1 − yn+1
− x = y

x

n+1 x − y

1− y
x

⎛
⎝⎜

⎞
⎠⎟
n+1 ≤

1− 1+ 4c1
1+ 1+ 4c1

n+1
x − y

1− y
x

. 

If c1 ∈D , then the maximum value of  
1− 1+ 4c1
1+ 1+ 4c1

  is equal to ρ , which can be found from relation (8).  

The uniform convergence follows from estimate (7).  Lemma 1 is proved.  
Fraction (1) is called limiting periodic if the sequence of its elements satisfies the condition  lim

n→∞
an = a∗ .   

Parallel with limiting periodic fractions, we also consider the finite fractions  

 
 
hn = 1+

an
1 +

an−1
1 +… +

a1
1 , n ≥ 1, h0 = 1 , (9) 

In the terminology of [6, p. 48], they are called reversed fractions. 
Lorentzen, Waadeland, and Thron studied the convergence of limiting periodic fractions and fractions of the 

form (9) in [5, 6, 8]. 

Lemma 2.  Let   {hn}n=0
∞   be a sequence of reversed fractions of the form (9) whose elements satisfy the 

condition  an ≤ a < 1
4 ,  n ≥ 1 .  Then the following inequalities hold: 

 hn > ξ, ξ =
1+ 1− 4 a

2 , n ≥ 0 . (10) 

The proof follows from the fact that the minimant of the fraction  hn   is the n th approximant of (2), where  

c = − a .  The sequence of approximants of the minimant   {gn}n=0
∞   monotonically decreases and  lim

n→∞
gn = ξ ,  

where  ξ   is the attracting point of the linear-fractional mapping  t(ω) = 1+ − a
ω .  Hence,  hn > ξ . 

Consider a 1-periodic branched continued fraction  

 1+
k=1

∞

D
cik
1

ik =1

ik−1
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

, (11) 

where   c j ∈C ,  j = 1,…,N ,  and  i0 = N   is an integer. 
The finite branched continued fractions  

 Fn = 1+
k=1

n

D
cik
1

ik =1

ik−1
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

, n ≥ 1, F0 = 1 , 
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are called the n th approximants of the branched continued fraction (11) and the quantities 

 Rn
(q) = 1+

k=1

n

D
c jk
1

jk =1

jk−1
∑ , 1 ≤ q ≤ N , n ≥ 1 , 

are called the n th tails of the q th order for fraction (11)  ( j0 = q ,  R0
(q) = 1 ,  Rn

(0) = 1 ). 

If  Rn
(q) ≠ 0 ,   q = 1,…,N ,  n ≥ 1 ,  then the following recurrence relations are true: 

 Rn
(q) = 1+

c j
Rn−1
(q)

j=1

q

∑ = Rn
(q−1) +

cq
Rn−1
(q) , (12′) 

 
 
Rn+m
(q) − Rn

(q) = Rn+m
(q−1) − Rn

(q−1) +
(−1)cq

Rn+m−1
(q) Rn−1

(q) (Rn+m−1
(q) − Rn−1

(q) ) . (12″) 

Let 

 
  
In+1

(q) = k = (k1,k2 ,…,kq ): k ≥ 0,   = 1,…,q,  k = n +1
=1

q

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, 

 
  
In+1

( j ,q) = {k ∈In+1
(q) : ki ≥ 1,  i = 1,…, j,  k j+1 =… = kq = 0} ,       q = 1,…,N , j = 1,…,q , 

be the sets of multiindices.  Then 

 
 

In+1
(q) = In+1

( j ,q )

j=1

q

 , 

 
  
In+1
(q+1,q+1)

= (In+1−s
(q) × {s})

s=1

n+1

 , (13) 

and    In+1
(k ,q )
 In+1

( ,q )
=∅   if   k ≠  . 

We now deduce the formula for the difference of two approximants of the branched continued fraction (11), 
by using a scheme proposed in [2, p. 28].  In this case, it is assumed that the product in which the superscript is 
smaller than the subscript is equal to 1. 

Lemma 3.  The difference of two approximants of the branched continued fraction (11) is given by the for-
mula 

 Fn+m − Fn = (−1)n+1

Rn+m
(N ) Rn

(N )
c1
k1c2

k2 …cN
kN

(Rpj +m−r
( j ) R̂p j −r

( j ) )r=1
k j∏j=1

N∏k∈In+1
(N )
∑ , (14) 
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where  n ≥ 0 ,  m ≥ 1,  
 

p j = n − k
= j+1

N

∑ ,  and  

  R̂n
(q) =

Rn
(q) , n ≥ 0,

1, n = −1.

⎧
⎨
⎪

⎩⎪
 

Proof.  By induction on  q ,  for fixed  n ≥ 0   and  m ≥ 1 ,  we prove the equality  

 Rn+m
(q) − Rn

(q) = (− 1)n
c1
k1c2

k2 …cq
kq

(Rpj +m−r
( j ) R̂p j −r

( j ) )r=1
k j∏j=1

q∏k∈In+1
(q )
∑ . (15) 

For q = 1 ,  equality (15) follows from relations (12′) and (12″) with  p1 = n : 

 Rn+m
(1) − Rn

(1) =
(−1)n c1

n+1

Rn+m−r
(1) R̂n−r

(1)
r=1
n+1∏

. 

Assume that equality (15) holds for q = s .  After elementary transformations, in view of relations (12) 
and (13), for  q = s +1 ,  we get 

 

 

Rn+m
(s+1) − Rn

(s+1) = Rn+m
(s ) − Rn

(s ) +
(−1)p cs+1

p

Rn+m−s
(s+1) Rn−s

(s+1)
s=1
p∏

(Rn+m− p
(s ) − Rn− p

(s ) )
p=1

n

∑  

  = (−1)n
c1
k1c2

k2 …cs+1
ks+1

(Rpj +m−r
( j ) R̂p j −r

( j ) )r=1
k j∏j=1

s+1∏k∈In+1
( s+1)
∑ . 

In view of the relation  Fn+m − Fn = 1
Rn+m
(N ) − 1

Rm
(N ) ,  the proof of the lemma is completed. 

We now construct the domains  Ω j   for the choice of elements  c j ,   j = 1,…,N ,  of fraction (11). 
Let  Ω1 = G ,  where the domain  G   is defined by relation (4).  We choose an element  c1 ∈Ω1   and fix it.  

Denote   

 p1 =
y1
x1

=
1− 1+ 4c1
1+ 1+ 4c1

, 

where  x1   and  y1   are the fixed points of the linear-fractional mapping (3). 



294 D. I. BODNAR  AND  M. M. BUBNYAK 

We now choose and fix an element  c2   from the region 

 
 
Ω2 = z ∈C: z <

r1
4

⎧
⎨
⎩

⎫
⎬
⎭
, r1 = x1

2 1− p1
3

1+ p1
. (16) 

Let the elements  c j ∈Ω j ,   j = 3,…,k ,  be chosen and fixed.  Then the region  Ωk+1  is denoted as follows: 

 
 
Ωk+1 = z ∈C: z < 1

4 rj
j=1

k

∏
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, rj = ξ j

2 , ξ j =
1+ d j
2 , k ≤ N −1 , (17) 

 d j = 1− 4 c j rk
−1

k=1

j−1

∏ . (18) 

Theorem 1.  Let the elements of fraction (11) belong to the regions constructed above, i.e.,  c j ∈Ω j ,  

 j = 1,…,N . 
Then 

 (і) fraction (11) converges; 

 (іі) the following estimate of the rate of pointwise convergence is true: 

 Fn − F ≤ Cn+N−1
N−1 Lpn+1, n ≥ 1 . (19) 

  Here,  
  
p= max

j=1,…,N
{p j} ,  p j =

1
(1+ d j )

2 , and  d j ,  j=2,…,N ,  are given by relations (18), 

 L = 4N

cos2 α
M1

M j

(1+ d j )
2

j=2

N

∏ , 2α =
argc1, argc1 ≠ π,
0, argc1 = π,

⎧
⎨
⎩

 

 

 

M1 =
x1 (1+ p1)
(1− p1)

2 , M j =
c j 4

j

p j cos
2 α (1+ dm )

2
m=2
j∏

, j = 2,…,N ; 

 (ііі) F = x j
j=1

N

∏
⎛

⎝
⎜

⎞

⎠
⎟

−1

  is the value of fraction (11), where  

 x j =
1
2 1+ 1+ 4c j xp

−2

p=1

j−1

∏
⎛

⎝
⎜

⎞

⎠
⎟ . 
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Proof.  By induction on  q ,  we prove that  Rn
(q) ≥ Kq ,  where 

 Kq = cosα
2

1+ d j
2

j=2

q

∏ ,      n ≥ 0 ,       q = 1,…,N . 

Note that  Rn
(1) = fn   is the n th approximant of the 1-periodic fraction (2).  Therefore, for any  c1∈Ω1 ,  we 

get  c1∈P(α) ,  where  

 
 
P(α) = z ∈C: z − Re(ze−2iα ) ≤ 1

2 cos
2 α⎧

⎨
⎩

⎫
⎬
⎭

 

and  α   is defined in item (іі) of the theorem.  The parabolic theorem 3.43 [6, p. 151] implies that  Rn
(1) ∈V (α) ,  

where 

 
 
V (α) = z ∈C:Re(ze− iα ) ≥ 1

2 cosα
⎧
⎨
⎩

⎫
⎬
⎭

. 

Since  dist (0;∂V (α)) = K1 ,  we obtain  Rn
(1) ≥ K1 ,  n ≥ 0 .  By using relation (5), we also establish the estimate  

Rn
(1) Rn−1

(1) ≥ r1 . 

Under the assumption that  Rn
(s ) ≥ Ks ,  n ≥ 0 ,  2 ≤ s ≤ q ,  we prove that the inequalities  Rn

(q+1) ≥ Kq+1 ,  

n ≥ 0 ,  hold.  Note that all  Rn
(s ) ≠ 0 , n ≥ 0 ,  2 ≤ s ≤ q .  In view of of Proposition 1 in [1, p. 9], we find  

Rn
(q+1) = Rn

(q)hn
(q+1) ,  n ≥ 0 ,  where  hn

(q+1)  is a reversed fraction of the form 

 
 
hn
(q+1) = 1+

cq+1
Rn
(q)Rn−1

(q)

1 +

cq+1
Rn−1
(q)Rn−2

(q)

1 +… +

cq+1
R1
(q)R0

(q)

1 . (20) 

By virtue of the relation  cq+1 ∈Ωq+1 ,  we conclude that, for  n ≥ 0 ,  the elements of the fractions  hn
(q+1)   

satisfy the condition  

 
cq+1

Rn
(q)Rn−1

(q) ≤
cq+1

r1 ξ j
2

j=2
q∏

=
cq+1

rjj=1
q∏

< 1
4 . (21) 

According to Lemma 2, for  

 a =
cq+1

rjj=1
q∏

, 
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we obtain the inequality  hn
(q+1) > ξq+1 ,  where  ξq+1 =

1
2 (1+ dq+1) .  Hence, the inequalities   

 Rn
(q+1) = Rn

(q) hn
(q+1) ≥ Kq

1+ dq+1
2 = Kq+1  

hold for  n ≥ 0 . 
To estimate the rate of convergence for fraction (11), we use relation (14).  We now establish the upper 

bounds for the expressions 

 

 

c j
k j

Rs j +m−r
( j ) R̂s j −r

( j )⎛
⎝⎜

⎞
⎠⎟

r=1

k j

∏
, j = 1,…,N , s j = n − k

= j+1

N

∑ . (22) 

For  j = 1 ,  in view of relation (5), we get 

 

 

c j
k1

Rs1+m−r
(1) R̂s1−r

(1)⎛
⎝

⎞
⎠

r=1

k1
∏

≤ M1
c1
x1

2
⎛

⎝⎜
⎞

⎠⎟

k1
. 

If  x1   and  y1   are solutions of the equation  ω2 − ω − c1 = 0 ,  then  

 
c1
x1

2 =
x1 y1
x1

2 = p1  

and  p1 < 1 . 

In view of the relations  Rn
( j ) = Rn

( j−1) hn
( j ) ,   j = 2,…,N ,  and inequalities (21), we find  

 
c j

Rn
( j ) Rn−1

( j ) =

c j
Rn
( j−1) Rn−1

( j−1)

hn
( j ) hn−1

( j ) < 1/4
ξ j
2 < 1

(1+ d j )
2 = p j . 

Since  1 ≤ k j ≤ n +1 ,  expressions (22) satisfy the inequalities 

 

  

c j

Rs j +m−2r+1
( j ) Rs j +m−2r

( j )⎛
⎝⎜

⎞
⎠⎟

r=1

[k j /2 ]

∏
c j

R̂s j −2r+1
( j ) R̂s j −2r

( j )⎛
⎝⎜

⎞
⎠⎟

r=1

[k j /2 ]

∏ ≤ M j p j
k j , (23) 

where 
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 M j = max 1,
c j

p jK j
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

c j 4
j

p j cos
2 α (1+ dm )

2
m=2
j∏

. 

Hence, 

 

 

Fn+m − Fn ≤ 1
KN

2 M j p j
k j ≤

j=1

N

∏
k∈In+1

(N )
∑

M jj=1
N∏
KN

2 pk1+k2+…+kN

k∈In+1
(N )
∑ = Cn+N−1

N−1 L pn+1 . 

Passing to the limit as  m→∞ ,  we arrive at estimate (19). 
We now find the value of fraction (11).  By using Proposition 1 in [1, p. 9], we obtain 

 
  
F = lim

n→∞
Fn = lim

n→∞
(Rn

(N ))−1 = lim
n→∞

(hn
(1))−1 ⋅(hn

(2))−1 ⋅…⋅(hn
(N ))−1 . 

By induction on q , we now prove that  lim
n→∞

hn
(q) = xq ,  where 

 xq = 1
2 1+ 1+

4cq
xp
2

p=1
q−1∏

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

For q = 1 , we have lim
n→∞

hn
(1) = x1 ,  where x1  is given by relation (3).  By the assumption of induction, we find 

 lim
n→∞

cq+1
Rn
(q)Rn−1

(q) =
cq+1

x j
2

j=1
q∏

. 

According to Lemma 2, the inequalities  hn
(s ) > ξs ,  n ≥ 0 ,  are true.  This enables us to conclude that   

lim
n→∞

hn
(s ) = xs ≥ ξs ,   s=2,…,q .  In view of the estimates  

 
cs+1

x j
2

j=1
s∏

≤
cs+1

x1
2 ξ j

2
j=2
s∏

≤
cs+1

rjj=1
s∏

< 1
4  

and Theorem 4.1 in [8, p. 47], we obtain lim
n→∞

hn
(q+1) = xq+1 .  Hence, the value of fraction (11) is F = x j

j=1

N

∏
⎛

⎝
⎜

⎞

⎠
⎟

−1

.   

The theorem is proved.   

Let 

 
 
∂G = z ∈C: arg z + 1

4
⎛
⎝⎜

⎞
⎠⎟ = π

⎧
⎨
⎩

⎫
⎬
⎭

, 
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and let  K   be an arbitrary compact set  (K ⊂ G) ,  where  G   is given by relation (4).  Let   

 Δ = max
z∈∂K

z + 1
4 ,     δ = min

z∈∂K
z + 1

4 = dist − 1
4 , ∂K

⎛
⎝⎜

⎞
⎠⎟ ,     dist (∂G, z∗ ) = dist (∂G, ∂K ) ,   

and   

 ε = π − arg z∗, arg z∗ ≠ π,
π, arg z∗ = π.

⎧
⎨
⎪

⎩⎪
   

We now construct a domain  D1   of the form (6) with the parameters specified above.  It is clear that  K ⊆ D1 . 

Theorem 2.  Let the elements of fraction (11) belong to the domains  Dj ,  i.e.,  c j ∈Dj ,  j = 1,…,N ,  
where  D1   is the domain of the form (6) defined above, 

 
  
Dj = z ∈C: z <

m1
2

4 j−1
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, j = 2,…,N , 

and 

  m1 = (1− ρ1)
1
4 + δ sin ε2 + δ , (24) 

where  ρ1   is given by relation (8). 
Then: 

 (і) fraction (11) converges uniformly in   D1 × D2 ×…× DN ; 

 (іі) the following estimate for the rate of convergence is true: 

 Fn − F ≤ Cn+N−1
N−1 Lρn+1, n ≥ 1 . (25) 

Here,  ρ = max ρ1,
1
3

⎧
⎨
⎩

⎫
⎬
⎭

,  L = 12N−1M
m1

2 ,  M =
(1/2 + Δ )(1+ ρ1)

(1− ρ1)
,  and  F   is the value of fraction (11). 

Proof. By analogy with Theorem 1, we prove by induction that Rn
(q) ≥ mq , mq =

m1

2q−1
, n ≥ 0 ,  q = 1,…,N .  

Since  Rn
(1) = fn   is the n th approximant of the 1-periodic fraction (2), the estimate  Rn

(1) ≥ x1 (1− ρ1) ,  n ≥ 0 ,  
is true.  Here,  x1   and   ρ1   are given by relations (3) and (8).  In view of the inclusion  c1 ∈D1 ,  we conclude 

that  Rn
(1) ≥ m1 ,  where  m1   is given by (24). 
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Assume that the inequalities  Rn
(s ) ≥ ms ,   s = 2,…,q ,  n ≥ 0 ,  hold.  Since the inequalities   

 
cq+1

Rn
(q)Rn−1

(q) ≤
cq+1
mq

2 < 1
4 ,     n ≥ 0 , 

are true for the elements of reversed fractions hn
(q+1)  of the form (20), we arrive at the following estimates:   

 Rn
(q+1) = Rn

(q) hn
(q+1) ≥ 1

2 mq ≥ mq+1 ,     n ≥ 0 .  

In order to determine the rate of convergence for fraction (11), we use relation (14).  We estimate expres-
sions (22).  In view of the equality  c1 = x1y1 ,  for  j = 1 ,  we arrive at the estimate 

 

 

c1
k1

Rs1+m−r
(1) R̂s1−r

(1)⎛
⎝

⎞
⎠

r=1

k1
∏

≤ M
y1
x1

k1
≤ Mρ1

k1 , 

where  ρ1   is the maximum value of the quantity  
y1
x1

  given by relation (8). 

In view of the inequalities  
c j

Rn
( j−1) Rn−1

( j−1) < 1
4   and  hn−1

(s ) > 1
2 ,  we conclude that  

 

c j
Rn
( j−1) Rn−1

( j−1)

hn−1
( j ) < 1

2  

for any  j ,  j = 2,…,N .  Thus, we arrive at the estimate 

 
c j

Rn
( j ) Rn−1

( j ) =

c j
Rn
( j−1) Rn−1

( j−1)

hn−1
( j )

1

1+

c j
Rn
( j−1) Rn−1

( j−1)

hn−1
( j )

≤ 1
3 = ρ j . 

By analogy with Theorem 1, estimate (23) for  1 ≤ k j ≤ n +1   takes the form 

 

  

c j

Rs j +m−2r+1
( j ) Rs j +m−2r

( j )⎛
⎝⎜

⎞
⎠⎟

r=1

[k j/2 ]

∏
c j

R̂s j −2r+1
( j ) R̂s j −2r

( j )⎛
⎝⎜

⎞
⎠⎟

r=1

[k j /2 ]

∏ ≤ M jρ j
k j , 
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where  

 M j = max 1,
c j

ρ jm1
2 ,

c j
ρ j

,
c j

ρ jm1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 3 . 

Hence, 

 Fn+m − Fn ≤ 1
mN

2 M jρ j
k j ≤ Cn+N−1

N−1 Lρn+1
j=1

N

∏
k∈In+1

(N )
∑ . 

This yields estimate (25) as  m→∞ .  The theorem is proved.   
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