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DEVELOPMENT OF THE THEORY OF BRANCHED CONTINUED FRACTIONS  
IN 1996–2016 

D. І. Bodnar1  and  Kh. Yo. Kuchmins’ka2 UDC 517.524 

We perform the analysis of investigations in the theory of branched continued fractions carried out for 
the last 20 years in the directions developed under the general supervision of Prof. V. Ya. Skorobohat’ko 
(18.07.1927–04.07.1996) including, in particular, the interpolation of functions of several variables by 
branched continued fractions, the determination of efficient criteria of convergence and computational 
stability of these fractions, the correspondence between multiple power series and functional branched 
continued fractions, the investigation of various classes of functional fractions, and the application of 
branched continued fractions. 

In the survey [25] devoted to the bright memory of Prof. V. Ya. Skorobohat’ko (18.07.1927–04.07.1996), 
the authors analyzed the results obtained in the analytic theory and applications of branched continued fractions 
(BCF) for the time after the appearance of the first publications [48, 70].  These investigations were carried out 
under the supervision of Skorobohat’ko in the following directions: the interpolation of functions of several var-
iables by branched continued fractions, the determination of the effective criteria of convergence and computa-
tional stability of BCF, the correspondence between multiple power series and functional BCF, the investigation 
of various classes of functional BCF, the application of BCF to the construction of efficient algorithms for the 
solution of systems of linear algebraic equations, the construction of the theory of integral continued fractions, 
and their application to the solution of integral equations.  The results of investigations were summarized in the 
monographs [13, 27, 69, 72]. 

In the present work, we analyze the development of these directions after 1996.  One doctoral-degree the-
sis [57] and seven candidate-degree theses [10, 28, 32, 33, 36, 42, 61] devoted to the analytic theory of multidi-
mensional continued fractions were defended for this period of time.  

The investigations in the field of integral continued fractions were terminated but these fractions were suc-
cessfully used in the problems of interpolation of nonlinear functionals and operators on continuum sets of the 
nodes [40, 60]. 

The problems of interpolation were studied only for special types of BCF, namely, for two- and three-
dimensional continued fractions, branched continued fractions with independent variables (Kuchmins’ka [50], 
Baran [10], and Vozna [59]), and continued fractions (Pahirya [67, 68]). 

Nedashkovs’kyi with his colleagues continues the investigations devoted to the construction of numerically 
stable methods for the solution of systems of linear algebraic equations with the help of BCF [65].  In the mono-
graph [66], the authors solved the systems of linear algebraic equations whose coefficients are polynomials of 
the parameter. 

At the same time, the analytic theory of branched continued fractions with N  branches was additionally de-
veloped.  The most general (at present) criterion of convergence of BCF with positive elements was established 
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in [18].  However, by using this theorem, it is impossible to obtain an analog of the Seidel criterion of conver-
gence of continued fractions [76, 83, 85, 87] at least in the following formulation: 

The BCF  

 b0 +
k=1

∞

D 1
bi(k )ik =1

N

∑  

with positive elements converges if the series  
  

min(bi(k ) , ip = 1,…,N , p = 1,…,k)
k=1

∞

∑   is divergent. 

Thus, this problem remains open.  
In [14, 15], the author analyzed the criteria of convergence of the BCF and formulated unsolved problems.  

The investigations of convergence of the BCF whose elements belong to coupled and parabolic domains were 
also additionally developed [1, 2]. 

The most general parabolic domain of convergence for BCF of the general form was established by An-
tonova [2]. 

Theorem 1.  Assume that there exist positive constants  ε ,  ε < 1,  and  ψ ,  ψ < π
2(1+ ε) ,  such that, for all 

possible multiindices of the elements of the BCF 

 
k=1

∞

D
ai(k )
1

ik =1

N

∑ , (1) 

the following conditions are satisfied 

 
 

ai(k ) − Re(ai(k ) exp(− i(ψ i(k−1) + ψ i(k ) ))
cosψ i(k ) − pi(k )

≤ 2(1− ε)pi(k−1)
ik =1

N

∑ , 

where  ψ i(k )  and  pi(k )  are real numbers such that 

  ψ i(n) ≤ ψ, n = 0,1,…, 0 ≤ pi(k ) < (1− ε)cosψ i(k ) , k = 1,2,…, p0 ≥ 0 . 

Then  

 (i) the values of all approximants of the BCF (1) are finite and belong to the half plane 

  V0 = {w ∈C :Re(wexp(− iψ0 ) ≥ − p0} ; 

 (ii) there exist finite limits of the subsequences of approximants   { f2n} ,  { f2n−1}   of the BCF (1); 

 (iii) the BCF (1) converges if the series  
 

(max ai(k ) )−1

k=1

∞

∑   diverges. 
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Hladun interpreted the problem of stability of BCF via the stability under perturbations as a continuous de-
pendence of infinite BCF on their elements [33, 34].  Let   

  I0 = {0} ,        Ik = {i(k): ip = 1,2,…,N , p = 1,2,…,k} ,    k ≥ 1.   

Consider a BCF 

 a0 b0 +   
k=1

∞

D
ai(k )
bi(k )ik =1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

−1

 (2) 

and a perturbed BCF  

 
 

!a0
!b0 +   

k=1

∞

D
!ai(k )
!bi(k )ik =1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

−1

 (3) 

with complex elements.  A sequence of nonempty sets   {Ωi(k )},   Ωi(k ) ⊂ C2 ,  is called a sequence of sets of 
absolute stability under perturbations of the BCF (2) if, for any real  ε ,  ε > 0 ,  there exists a real number  δ ,  
δ > 0 ,  such that, for any   (ai(k ) ,bi(k ))∈Ωi(k ) ,  i(k)∈Ik ,  k ≥ 0 ,  and any    ( !ai(k ) ,

!bi(k ))∈ Ωi(k ) ,  i(k)∈Ik ,  k ≥ 0,   
such that   ai(k ) − !ai(k ) < δ ,   bi(k ) −

!bi(k ) < δ ,  the following inequalities are true:  

  fn −
!fn < ε, n ≥ 0 , 

where  fn   and   
!fn   are the n th approximants of the BCF (2) and (3), respectively. 

If all  ai(k ) ≠ 0,  bi(k ) ≠ 0 ,  i(k)∈Ik ,  k ≥ 0 ,  and, for any   (ai(k ) ,bi(k ))∈Ωi(k ) ,  i(k)∈Ik ,  k ≥ 0,  and any  

  (
!ai(k ) , !bi(k ))∈Ωi(k ) ,  i(k)∈Ik ,  k ≥ 0,  such that   

 
 

ai(k ) − !ai(k )
ai(k )

< δ ,       
 

bi(k ) − !bi(k )
bi(k )

< δ , 

the inequalities  

  
 

fn − !fn
fn

< ε ,        n ≥ 0 , 

are true, then the sets from the sequence   {Ωi(k )}  are called the sets of relative stability under perturbations of 
the BCF (2). 

Bodnar and Hladun studied the stability under perturbations of the BCF with positive, real, and in particular, 
negative or alternating elements, as well as the stability of some subsequences of their approximants [19–21, 34].  
The fact of convergence and, especially, of stability in the case where the partial numerators of the BCF are neg-
ative turns to be of particular interest [4, 34].  For the continued fractions in the domain   {x ∈R: x < −1/4} ,  the-
se problems have not been investigated yet. 
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Theorem 2.  Assume that relative errors of elements of the BCF (2) are uniformly bounded.  Then the do-
mains   

 Ω0 = (0,+∞)× (ν0 ,+∞) ,      Ωi(k ) = Ωk = (0,µk )× (νk ,+∞),    i(k)∈Ik ,    k ≥ 1,   

where all  νk > 0   and  µk > 0 ,  form a sequence of the domains of relative stability of the BCF (2) provided 
that the series 

 νk−1νk
2µk

−1(Nµk+1 + νkνk+1)
−1

k=1

∞

∑  

diverges. 

The multidimensional sets of stability of the BCF with complex elements were also investigated in the case 
where 

    (ai(k )1,ai(k )2 ,…,ai(k )N ,bi(k ))∈Ωi(k ) , Ωi(k ) ⊂ CN+1, i(k)∈Ik , k ≥ 0 . 

The analysis of convergence of the BCF with matrix elements [64] is of interest and quite promising.  Let  
X   be the Banach algebra of square matrices of order  p   over the field   C .  The matrix BCF is a sequence of 
approximants  

 F1 = bi1
−1ai1

i1=1

N

∑ =
ai1
bi1i1=1

N

∑ , 

 
 

F2 = bi1 + b
i1i2

−1 a
i1i2i2=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

−1

ai1 =
i1=1

N

∑
k=1

2

D
ai(k )
bi k( )

,…
ik =1

N

∑ , 

where  ai(k ),  bi(k ) ∈X   are nondegenerate square (p × p)-matrices. 

Theorem 3.  The matrix branched continued fraction  

 
k=1

∞

D
ai(k )
bi(k )ik =1

N

∑  (4) 

with elements satisfying the conditions 

 bi(k )
−1 ≤ 1+ ai(k+1)

ik+1=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

−1

, i(k)∈Ik , k ≥ 1 , 

is absolutely convergent and  
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 z ∈X : z ≤ ai(1)
i1=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

is the set of its values.  

For the construction of expansions of the functions of several variables in BCF, it is customary to use two 
approaches:  

 (1) determination of recurrence relations for given functions; 

 (2) the principle of correspondence between the multiple power series and functional BCF. 

Actually, the first approach was used by Manzii for the construction of expansions of the ratios of the Appel 
hypergeometric functions  F2 (a,b, ′b ;c, ′c ;z)   and  F3(a, ′a ,b, ′b ;c;z) . She established new recurrence relations 
for these functions.  In [26, 62, 63], on the basis of these relations, the authors established and studied the corre-
spondence and convergence of expansions of the ratios of these functions in the BCF and estimated the errors of 
approximations by approximants in certain domains.  In the works by Hoyenko [22, 23, 35, 37, 38], the appa-
ratus of branched continued fractions was used for the approximation of the Lauricella hypergeometric functions  

   FD
(N )(a,b1,b2 ,…,bN ;c;z1, z2 ,…, zN ) 

  
 
=

(a)k1+k2+…+kN
(b1)k1 (b2 )k2 …(bN )kN

(c)k1+k2+…+kNk1,k2 ,…kN =0

N

∑ z1
k1z2

k2 …zN
kN

k1!k2 !…kN !
, 

where the parameters   a,b1,b2 ,…,bN , and  c   are complex numbers,  c ≠ 0, −1, −2,…;  z1, z2 ,  …, zN   are com-
plex variables;  (α)k   is the Pochhammer symbol. 

A multidimensional analog of the Nörlund continued fraction was also constructed and investigated.  

Theorem 4.  Assume that the parameters of the function  FD   are real numbers and satisfy the conditions   

 a > 0,      bk > 0,     k = 1,…,N ,      2c > a + bk +1
k=1

N

∑ .   

The ratio of the Lauricella hypergeometric functions 

 
 

FD(a,b ;c; z )
FD(a +1,b + ei ;c +1; z )

 (5) 

can be expanded in a Nörlund-type BCF: 

 b0 (z ) +
k=1

∞

D
ai(k ) (z )
bi(k ) (z )ik =1

N

∑ , (6) 
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where 

 b0 (z ) = 1− a +1
c z1 −

bj
c z j

j=1

N

∑ , ai(k ) (z ) =
(a + k)(bik + pi(k ) )
(c + k −1)(c + k) z

ik
(1− zik ) , 

 bi(k ) (z ) = 1− a + k
c + k zik −

bj + pi(k ) j
c + k z j

j=1

N

∑ , pi(k ) = δik
im + δik

1

m=1

k−1

∑ . 

The BCF (6) uniformly converges on compact sets of the domain   

 G = z ∈!!N : Re zi <
1
2 , i = 1,…,N{ }  

to a holomorphic function obtained as the analytic extension of function (5) holomorphic in a neighborhood of 
the origin of coordinates onto the domain  G . 

The approximation of Lauricella–Saran functions by branched continued fractions was studied in [39]. 
As one of the most efficient and general methods for the expansion of functions both of a single varia-

ble [76] and of many variables in functional BCF, we can mention the construction of BCF corresponding to 
multiple power series. 

Let the following formal multiple power series be given 

 L(z) = cm(N )z
m(N )

m(N ) ≥0
∑ , (7) 

where 
  
cm(N )∈!! ,    z = (z1, z2 ,…, zN )∈!!N ,  m(N ) = m1m2…mN  is a multiindex, mi ≥0 ,  i = 1,2,…,N , m(N ) =  

 m1 + m2 +…+ mN ,  and   z
m(N ) = z1

m1z2
m2 …zN

mN . 
A functional BCF corresponds to series (7) if the expansion of each its n th approximant in a formal multi-

ple power series coincides with series (7) in all homogeneous polynomials up to the degree  νn ,  inclusively,  
and  νn →∞   as  n→∞ . 

For the class of multidimensional C -fractions   

 b0 +
k=1

∞

D
ai(k )zik

1
ik =1

N

∑ ,   

this problem does not have an unambiguous solution.  To get the required result, it is necessary to impose addi-
tional conditions on the coefficients of the fraction, e.g., the condition that  ai(k )  do not change under permuta-
tions of indices in all multiindices, or to set some  ai(k )  equal to zero.  

Another way is to change the structure of a multidimensional continued fraction. Thus, Kuchmins’ka [49] 
and Murphy and O’Donohoe [84] defined in this way the first corresponding two-dimensional continued frac-
tions (TDCF) for double power series as follows:  

 Φ0 +
i=1

∞

D
ai,i xy
Φi

, Φi = 1+
j=1

∞

D
ai+ j ,i x

1 +
j=1

∞

D
ai,i+ j y

1 ; (8) 
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moreover, their approximants take the form   

 fn =
Pn
Qn

= Φ0
(n) +

i=1

n
2
⎡
⎣

⎤
⎦

D
ai,i xy

Φi
(n−2i ) (x, y)

, 

   (9) 

 Φi
(k ) = 1+

j=1

k

D
ai+ j ,i x

1 +
j=1

k

D
ai,i+ j y

1 , Φi
(0) = 1. 

However, the introduced approximants of TDCF of the form (9) do not allow us to obtain estimates of these 
fractions with positive elements similar to the estimates for continued fractions, which led to the analysis of the 
general type of approximants for the TDCF [78, 79].  Thus, for the TDCF 

 
i=0

∞

D
ai,i
Φi

, Φi = bi,i +
j=1

∞

D
ai+ j ,i
bi+ j ,i

+
j=1

∞

D
ai,i+ j
bi,i+ j

, (10) 

the general approximants have the form 

 fn =
i=0

n−1

D
ai,i

Φi
(n−i−1) , 

 Φi
(k ) = 1+

j=1

k

D
ai+ j ,i
bi+ j ,i

+
j=1

k

D
ai,i+ j
bi,i+ j

, (11) 

 
 
Φi

(0) = bi,i , n = 1,2,…. 

Proposition [78].  Suppose that the elements of the TDCF (10) are positive real numbers and that  j   and  k   
are arbitrary natural numbers.  Then the approximants fn   (11) satisfy the following “fork” property:   

 f2k < f2k+2 <  f2 j+1 < f2 j−1 .  

Approximants (9) are figured approximants of the TDCF (8).  They are called C -approximants.  The TDCF 
(8) with approximants of type (11) also correspond to a formal double power series [77, 79].  

The foundations of the analytic theory of two-dimensional continued fractions were laid in the works by 
Kuchmins’ka [49–59, 77–82], Antonova and Sus’ [5–7], Sus’ [59, 71], and Vozna [31, 32, 59, 80]. 

We now formulate the criterion of convergence of the TDCF established by Sus’ in [71]. 

Theorem 5.  Assume that the elements  bij ,   i, j = 0,1,…,  of the TDCF 

 
  k=0

∞

D 1
bkk +Φk

, Φk =
j=1

∞

D 1
bk+ j ,k

+
j=1

∞

D 1
bk ,k+ j

, k = 0,1,…, (12) 
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belong to the domain   

    {z ∈!! :Re z > 0, arg z < θ},  θ< π
2 ,   

and let the following conditions be satisfied: 

 lim
r→∞

(cosθ)−2r Ar
1 = 0, lim

r→∞
(cosθ)−2r Ar

2 = 0, lim
r→∞

(cosθ)−3r Ar
3 = 0 , 

where 

 
  
Ar
k = (1+ µℓ+1

k )
ℓ=1

r

∏ , k = 1,2,3, 

 
  
µℓ
1 = sup

i
{ bi+ℓ−1,i Rebi+ℓ,i}, µℓ

2 = sup
i

{ bi,i+ℓ−1 Rebi,i+ℓ},  

   µℓ
3 = bℓ−1,ℓ−1 Rebℓ,ℓ , ℓ = 2,3,…, i = 0,1,…. 

Then the TDCF (12) is convergent and the following estimate is true:  

 fn − f4 p+1 ≤ 1
Reb0,0

(1− cosθ)−1(cosθ)−4 p−2 (A2 p+2
1 + A2 p+2

2 ) 

  + 2
Reb0,0

(1− cosθ)−1(cosθ)−3p−1Ap+1
3 + 1

Reb0,0
(cosθ)−2 p−1A2 p

3 , 

where  n > 4 p +1. 

A somewhat different structure of two-dimensional continued fractions was proposed by Siemaszko [86]. 
The BCF corresponding to series (7) can be constructed in the form of BCF with independent variables 

 b0 +
k=1

∞

D
ai(k )zik

1
ik =1

ik−1
∑ , (13) 

where  i0 = N .  These fractions are now extensively investigated.  In [3, 8–11, 16, 17, 29, 30, 44, 47, 74, 75], 
the authors considered various criteria of convergence for these fractions. At the same time, the relationship with 
multiple power series was established in [12, 41, 43, 45, 46, 74, 75].  

For branched continued fractions of a special form, Baran [8, 9, 11, 12, 46] established circular domains 
of convergence, which are multidimensional generalizations of some known theorems on the twin convergence 
sets of continued fractions (Leighton, Wall, Thron, Lange, Wyshinski, and McLaughlin) [76, 83].  In the case 
where  N = 1,  under certain conditions imposed on the parameters, the circular sets of convergence obtained by 
Baran in [8] are broader than in the theorems mentioned above. 
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Let  

 I = {i(k): i(k) = i1i2…ik , 1≤ ip ≤ ip−1, p = 1,…, k, k ≥1}  

and let 

 
 
ℓ = ℓ(i(k)) = δik

is

s=1

k

∑ . 

We split the set of multiindices  I   into three mutually disjoint subsets  

   I1 = {i(k): ℓ = 1,k ≥ 1}, I2 = {i(k): ℓ = 2m,k ≥ 2} , 

   I3 = {i(k): ℓ = 2m +1,k ≥ 2}. 

Theorem 6.  The branched continued fraction  (N > 1) 

 1+
k=1

∞

D
ci(k )
2

1
ik =1

ik−1
∑  (14) 

with complex elements  ci(k )  converges if the following conditions are satisfied: 

 
 
ci(k ) ± iΓ1,ik

≤ ξ1,ik , (ξ1,ik + Γ1,ik
)2 ≤

ρ1 − ε1
ik−1 −1

, i(k)∈I1, 

 
 
ci(k ) ± iΓ2,ik

≥ ξ2,ik , (ξ2,ik − Γ2,ik
)2 ≥ (2 +ρ1)(1+ρ1 +ρ + ε2 ) ,      i(k)∈I2 , 

 
 
ci(k ) ± iΓ3,ik

≤ ξ3,ik , (ζ3,ik + Γ3,ik
)2 ≤ ρ − ε3 ,      i(k)∈I3 , 

where  ρ1 > 0 ,  ρ > 0 ,  0 < ε1 < ρ,  0 < ε3 < ρ ,  ε2 > 0 ,   Γ s,ik
∈C ,  ξs,ik > 0 ,   and  s = 1,2,3 . 

For the TDCF and BCF of a special form, Kuchmins’ka proposed boundary versions of the Worpitzky theo-
rem [52, 82].  We present one of these versions: 

Theorem 7.  Let  ρ  be a real number from   (0,S ]  and let  Fρ   be a family of two-dimensional continued 

fractions (10) with partial denominators equal to  1  whose elements satisfy the following conditions: 

 ai+1,i + ai,i+1 + ai+1,i+1 = ρ(1−ρ), a0,0 = ρ(1−ρ), 

 ai+ j ,i = ρ(1−ρ), ai,i+ j = ρ(1−ρ), j ≥ 2, 0 < ρ ≤ 1
2 . 
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Then the sets of all possible values of  f   for two-dimensional continued fractions (11) from  Fρ   form 

a ring 

 ρ (1−ρ)1+ρ ≤ f ≤ ρ . 

Dmytryshyn studied some classes of functional branched continued fractions with independent variables, 
established the conditions of their convergence, determined estimates for the errors of approximation by approx-
imants and proposed various multidimensional algorithms for the expansion of multiple power series in these 
fractions including, in particular, the Bauer g -algorithm, the Rutishauser qd -algorithm, etc. [42–47, 74, 75].  He 
constructed and investigated the expansions of some specific analytic functions in functional BCF with none-
quivalent variables.  Thus, the function  

  F(a,1,c;z1) F(b,1,d;− z2 (F(a,1,c;−z1))
2 ) 

 
= (−1)ℓ (−1)k

(a)k
(c)k

z1
k

k=0

∞

∑⎛
⎝⎜

⎞
⎠⎟

2ℓ+1
(b)ℓ
(d)ℓ

z2
ℓ

ℓ=0

∞

∑  

is expanded in a g -fraction with nonequivalent variables as follows:  

 Φ0 (z1)+
n=1

∞

D g0n (1− g0n )z2
Φn (z1)

⎛
⎝⎜

⎞
⎠⎟

−1

, 

 Φn (z1) = 1+ g1nz1 1+
k=2

∞

D
gkn (1− gk−1,n )z1

1
⎛
⎝⎜

⎞
⎠⎟

−1

, 

 
 
g2r−1,ℓ−1 = a + r −1

c + 2r − 2 , g2r ,ℓ−1 = r
c + 2r −1 , 

 
 
g0,2ℓ−1 = b + ℓ −1

d + 2ℓ − 2 , g0,2ℓ = ℓ
d + 2ℓ −1 . 

In different classes of BCF, we consider various types of functional BCF, namely, the multidimensional g -, 
J -, π -, and C -fractions.  The multidimensional g -fractions are studied especially comprehensively.  The results 
of their investigation were summarized in the survey [24].  Hoyenko [37] studied the relationship between the 
correspondence and uniform convergence of functional BCF. 

Bubnyak defined and established, by using the properties of boundary-periodic and inverse continued frac-
tions, the criteria of pointwise and uniform convergence of periodic BCF of a special form and, in particular, 
investigated the oval domains of convergence for p -periodic BCF [16, 17, 29, 30, 73].  We now present the 
necessary condition of convergence of a 1-periodic BCF with real elements formulated in the following theo-
rem [28, p. 99]:  

Theorem 8.  If a 1-periodic BCF 

 1+
k=1

∞

D
cik
1

ik =1

ik−1
∑

⎛

⎝
⎜

⎞

⎠
⎟

−1

 (15) 
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with real elements  cik   converges, then its elements satisfy the conditions   

 cq ≥ − 1
4 Xq−1

2 ,      q = 1,2,…,N ,   

where  Xq   are determined by the recurrence relation  

 
 
Xq = 1

2 (Xq−1 + Xq−1
2 + 4cq ),     X0 = 1. 

The sufficient condition of convergence of the BCF (15) can be formulated as follows:   

 cq > − 1
4 Xq−1

2 ,         q=1,2,…,N . 

Note that the presented list of references is far from being complete.  
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