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Abstract: Search engine retrieves list of web pages which are relevant to the given query from the index and sorts the 
list based on the page importance score. There are different ranking algorithms available in the literature to calculate 
the importance score of web pages. The basis of all ranking algorithms is the link structure of the web. In existing 
ranking algorithms, no weight is assigned to the links by considering the similarity among the linked documents. Since 
links from similar documents are more important than the links from other dissimilar documents, a new method is 
introduced to assign weight to each link based on the similarity among the linked documents. Calculated link weight is 
added with existing PageRank value to calculate final PageRank. Proposed technique is compared with existing 
ranking algorithms using the measures precision, recall and F-measure.  
 
Keywords: Authority Score, Hub Score, Link structure, PageRank, Similarity, Stemming. 

 
 

1. INTRODUCTION 
Web mining is used to search the content of the 

Web, to perform link analysis and to identify the 
users’ behavior in the past to predict the future 
usage of the web. Based on the above, web mining 
is divided into three categories such as Web 
Content Mining (WCM), Web Structure Mining 
(WSM), and Web Usage Mining (WUM) [1, 2, 3]. 

WCM discovers useful information from the 
web document content by applying some 
traditional data mining techniques. WSM deals 
with the discovery of relationships between web 
pages by analyzing web hyperlink structure. 
WUM mines user log files to identify the users’ 
behavior in viewing the web pages. This 
information is helpful to make future decisions.  

All existing search engines perform Web 
Structure Mining using inlinks and outlinks of the 
web pages to identify the popularity of a page. 
Based on the popularity, ranks are assigned to the 
web documents. A page is more popular if it is 
pointed by many pages. Using this concept as a 
base, many algorithms were devised to rank the 
pages according to its importance.  

One such technique is PageRank [4] used by 
Google search engine and it has proved to be a 
very effective algorithm for finding the rank of the 
search results.  

Improvement in the PageRank algorithm is 
done by HITS (Hypertext Induced Topic 
Selection)[5] using the concept of authorities and 
hubs. Authoritative pages have more number of 
incoming links and hub pages have more number 
of outgoing links. [6, 7, 8, 9] first identifies pages 
of interest through term-based techniques and then 
performs an analysis of only the graph 
neighborhood of these pages. Major problems 
with HITS algorithm is link spamming and topic 
drift [10]. 

Another method called SALSA (Stochastic 
Approach for Link Structure Analysis) introduced 
by [11] combines the random walk method of 
PageRank with hub and authority technique of 
HITS. It eliminates the drawbacks of HITS such 
as link spamming and topic drift [10].  

Wenpu Xing and Ali Ghorbani have introduced 
Weighted PageRank algorithm [12] which assigns 
larger rank values to more popular pages instead 
of dividing the rank value of a page evenly among 
its outlink pages. Each outlink page gets a value 
proportional to its popularity.  

In all the above ranking algorithms, links are 
not assigned with a weight value according to the 
similarity among the documents that are linked. In 
this paper, each link is assigned with a weight 
based on the level of similarity among the linked 
documents. Calculated link weight is added with 
the existing PageRank value.  
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First step of the proposed method is to extract 
terms from the documents. After extracting the 
terms, stop words are removed. Stop words are the 
terms that do not have any meaningful information 
to find the similarity among the documents. 
Resultant terms after stop word removal will 
undergo the process called stemming. Stemming is 
the process of converting the terms into their base 
forms. Stemmed terms are collected and TFIDF 
(Term Frequency / Inverse Document Frequency) 
value of the terms in every document is calculated 
and filled in the vector space. Vector space includes 
set of documents (D1 to DM) as rows and the 
collection of terms (T1 to TN) as columns. Distance 
matrix is formed from the TFIDF matrix using 
Euclidean distance function. Using the distance 
matrix, weight of each link is calculated and added 
with the initial PageRank.  

The remainder of this paper is organized as 
follows: Section 2 discusses the ranking algorithms 
available in the literature. Section 3 explains the 
proposed method. Section 4 discusses the results 
obtained. Section 5 concludes the paper and Section 
6 mentions the future work.  

 
2. EXISTING RANKING ALGORITHMS 
One of the major challenges in information 

retrieval is the ranking of search results. In the 
context of web search, where the data is massive and 
queries rarely contain more than three terms, most 
searches produce large collection of results. Since 
the majority of search engine users examine only 
first few pages of search results [13], effective 
ranking algorithms are necessary for satisfying 
users’ needs by bringing more relevant documents to 
first few pages. Many research works were done in 
link based ranking algorithms. Most of the research 
works has centered on proposing new link based 
ranking algorithms or improving the efficiency of 
existing ones. 

The following are the popular ranking algorithms 
in the literature: 
   i. PageRank 
  ii. HITS 
 iii. SALSA 
 iv. Weighted PageRank 

 
2.1. PAGERANK 

PageRank algorithm [4] is a commonly used 
algorithm which does Web Structure Mining. 
PageRank is used to sort the results so that more 
relevant pages are likely to be displayed at the 
beginning of the list of search results. It measures 
the importance of the pages by analyzing the links 
through markov chain model [14].  

The fundamental principle of PageRank is that “a 

page is important, if it being pointed by many other 
pages”. Hence, to quantify the PageRank value of a 
page A, the sum of the PageRank of other pages 
pointing to page A is computed. It is described 
mathematically as, 
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where Pj denotes the set of all pages in the web 
hyperlink structure that points to the page Pi. |Pj| is 
the number of outlinks of Pi. This equation computes 
the PageRank of the pages one at a time. However, a 
careful analysis will reveal that matrix multiplication 
can be used to compute the entire PageRank vector 
at a time. To avoid a page dominating the PageRank 
values of other pages and to suppress bogus pages, 
the rows of the matrix are normalized by dividing 
the entries with the total number of outlinks of the 
page. Mathematically, the iteration is defined as 
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where k denotes the number of iterations, P is the 
PageRank vector and H is the matrix obtained after 
normalizing the rows. After normalizing, the matrix 
becomes substochastic and we know the matrix thus 
obtained is the power method for left hand 
eigenvector computation and we also know that a 
stochastic matrix will have a stationary eigenvector. 
Hence the normalized hyperlink matrix is converted 
to a stochastic matrix by replacing the row entries, 
of the pages with no outlinks, with 1/n, where n is 
the number of pages. Mathematically, it is given as, 
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where ‘c’ is a column vector of all 1’s and is of 
order nx1, ‘a’ is a column vector which has ‘1’ entry 
for the dangling nodes (pages with no outlinks) and 
S is the stochastic matrix. However, the problem that 
still persists is the rank sink problem which is 
characterized by a single page or a set of pages 
dominating the PageRank values of other pages. 
Some pages may obtain a rank of zero in the process 
of convergence which is not conceptually possible. 
To overcome this problem, a teleportation matrix is 
used in the computation of the rank vector which 
also preserves the nature of the original input. The 
computations in creating the teleportation matrix can 
be mathematically modeled as 
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For an optimum mixture of the original values, α 

value is taken as 0.85. The iterations with the G 
matrix will provide a converged, unique PageRank 
vector for all the pages irrespective of the initial 
vector. Based on the PageRank vector, the pages are 
ranked and sorted. 

 
2.2. HITS  

HITS (Hypertext Induced Topic Selection) [5] 
algorithm calculates two different scores namely hub 
score and authority score. It collects pages and forms 
a graph with authorities and hubs. Web pages 
pointed by many hyperlinks are called authorities. 
Web pages that point to many other pages are called 
hubs. Strong authority is the page which has links 
from many highly scored hubs. Popular hub is the 
page which points or links to highly scored 
authorities.  

Authority score of a page is a function of the sum 
of the hub scores of the pages pointing to it while the 
hub score of a page is given by the sum of authority 
scores of the pages that points to it. These 
calculations can be performed through matrix 
multiplications using the adjacency matrix.  

 
Steps  
1. Construct an adjacency matrix by using 

the neighborhood graph N which 
indicates the connectivity of all the nodes.  

 
2. Calculate the authority vector from the 

adjacency matrix formed using the 
formula 

( )AAV T
k =                         (5) 

 
3. Calculate the hub vector from the 

adjacency matrix using the formula 
( ) k

T
k V AAU =     (6) 

4. Rank the pages using the hub and 
authority vectors formed. 

 
The equations 5 & 6 also define the iterative 

power method for computing the dominant 
eigenvector as in the PageRank algorithm. However, 
the implementation of HITS differs from the method 
used in the PageRank algorithm. HITS algorithm is 
query dependent and it processes only the pages that 
correspond to the given query either directly or 
indirectly.  

Initially, the base set is constructed by using the 
pages that directly correspond to the query and then 
it is expanded by adding the inlinks and outlinks of 

the pages in the base set. The set of pages thus 
obtained is visualized in the form of a web hyperlink 
graph and the adjacency matrix is constructed. The 
authority score and the hub score of a page is 
calculated as given in equations 5 and 6. The score 
vector is normalized by dividing the score of each 
page with the maximum score in that iteration. The 
matrices used are symmetric, positive semi definite, 
nonnegative and hence ensure convergence. 

Major advantage of HITS algorithm is its dual 
rankings. HITS presents two ranked lists to the user. 
One with more authoritative documents and the 
other one with most hubby documents. Authority 
score can be used when the search is oriented 
towards research. Hub score can be used when the 
search is broad. Another advantage of HITS is the 
size of the problem. It casts the ranking problem as a 
small problem, finding the dominant eigenvectors of 
small matrices. The size of these matrices is very 
small relative to the total number of pages on the 
web. 

Major disadvantage of HITS algorithm is 
susceptibility to link spamming [10]. By adding 
links to and from any web page, it is possible to 
change the hub and authority scores. Since hub score 
and authority score are interdependent, when hub 
score is increased by introducing more outlinks on a 
page, automatically the authority score of a page 
increases. Another problem with HITS is topic drift 
[10]. In building neighborhood graph N for a query 
it is possible that a very authoritative yet off-topic 
page be linked to a page containing the query terms. 
This very authoritative page can carry so much 
weight and its neighboring documents dominate the 
relevant ranked list returned to the user, skewing the 
results toward off-topic documents. Another 
drawback of original HITS algorithm is that it is 
query dependent. At query time, a neighborhood 
graph must be constructed and at least one 
eigenvector problem must be solved. This problem 
can be rectified by making HITS query-independent. 
It can be done by dropping the neighborhood graph 
step and computing the authority and hub vectors 
using the adjacency matrix of the entire web graph. 

 
2.3. SALSA 

SALSA, the Stochastic Approach for Link-
Structure Analysis [11] is based on the theory of 
Markov chains, and uses the stochastic properties of 
random walks done on a collection of pages along 
with hub and authority technique of HITS. The meta 
algorithm used by both HITS and SALSA is similar 
but the basic difference between two methods is the 
formation of an adjacency matrix. HITS algorithm 
considers the tight connection between the nodes of 
the graph but SALSA considers light connection by 
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performing random walk in the graph.  
Initially the neighborhood graph N associated 

with a particular query is formed. SALSA differs 
from HITS in the next step. Rather than forming an 
adjacency matrix L for the neighborhood graph N, a 
bipartite undirected graph G is built. G is defined by 
three sets: Vh, Va and E, where Vh is a set of hub 
nodes and Va is a set of authority nodes and E is a 
set of directed edges in N. Next, two Markov chains 
are formed from G, a hub Markov chain with 
transition probability matrix H, and an authority 
Markov chain with matrix A.  

HITS used the adjacency matrix L of N to 
compute authority and hub scores. On the other 
hand, PageRank computes a measure analogous to 
an authority score using a row-normalized weighted 
matrix G. SALSA uses both row and column 
weighting to compute its hub and authority scores. 
Let Lr be L with each nonzero row divided by its 
row sum and Lc be L with each nonzero column 
divided by its column sum.  

 
Steps 
1. A bipartite graph is drawn with hubs in 

one side of the graph and authorities in 
another of the graph. 

      i. Hub includes the nodes (Vh) with  
               outdegree greater than zero  
                                    and 
           ii. Authority side includes nodes (Va)  
               with indegree greater than zero 
 
2. Column and row weighted matrices Lc 

and Lr are formed. 
 
3. Hub and authority matrices are formed 

by  
T
crLLA =    (7) 

r
T
cLLA =    (8) 

       where Lr – Non-zero rows of L divided   
                           by its  row sum 
                   Lc – Non-zero rows of L divided    
                           by its  column sum 
4. Eigenvectors are formed from the hub 

and authority matrices. 
 
5. Based on the hub and authority vectors, 

the pages are ranked. 
 
SALSA is less susceptible to link spamming [10] 

since the interdependence between hub and authority 
scores is much less.  Unlike HITS, SALSA is 
victimized by the topic drift [10] problem. Serious 

drawback of SALSA is its query dependence. At 
query time, the neighborhood graph N for the query 
must be formed and the stationary vectors for two 
Markov chains must be computed. Another problem 
with SALSA is convergence. Since SALSA does not 
force irreducibility onto the graph, the resulting 
vectors produced by the algorithm may not be 
unique if the neighborhood graph is reducible. 

 
2.4. WEIGHTED PAGERANK 

It assigns larger rank values to more important 
(popular) pages instead of dividing the rank value of 
a page evenly among its outlink pages. Each outlink 
page gets a value proportional to its popularity (its 
number of inlinks and outlinks). The popularity from 
the number of inlinks and outlinks is recorded as 

in
u)(v,W  and out

u)(v,W , respectively.  
in

u)(v,W  is the weight of link (v, u) calculated 
based on the number of inlinks of page u and the 
number of inlinks of all reference pages of page v. 

 

∑ ∈

=
R(v)p p

uin
u)(v, I

IW             (9) 

 
where Iu and Ip represent the number of inlinks of 
page u and page p, respectively. R(v) denotes the 
reference page list of page v. 

out
uvW ),(  is the weight of link(v, u) calculated based 

on the number of outlinks of page u and the number 
of outlinks of all reference pages of page v. 
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where Ou and Op represent the number of outlinks of 
page u and page p, respectively. R(v) denotes the 
reference page list of page v. 

PageRank formula is modified as 
 

out
u)(v,

in
u)(v,

B(u)v
W WPR(v)d)(1PR(u) ∑

∈
+−=    (11) 

 
3. PROPOSED METHOD 

Proposed method assigns ranks to the pages by 
calculating the weight of each link based on the 
similarity among the documents connected by that 
link. Weight is added with the existing PageRank 
formula to produce final PageRank.  

 
Steps in the Proposed Method 

1. Term Extraction 
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2. Pre-Processing (Stop word removal  

    and Stemming) 

3. TFIDF Matrix formation  

4. Distance Calculation 

5. Weight Calculation  

 6. Final PageRank Calculation 

 
3.1. TERM EXTRACTION 

Text documents are different from web 
documents. Web documents are unstructured. In 
addition to text contents it also contains tag 
information. This tag information and the 
punctuations should be removed from the document 
to extract meaningful terms. Tokenization is used to 
perform this operation. 

Given a document, tokenization is the task of 
breaking it into pieces, called tokens, perhaps at the 
same time throwing away certain characters, such as 
punctuation. Here is an example of tokenization:  

Input: Friends, Romans, Country men, lend me 
your ears;  

Output: Friends Romans Country men lend me 
your ears  

Contents from the documents are extracted by 
removing the tags and special symbols with the use 
of tokenization. Extracted terms are given as an 
input to the next step. 

 
3.2. PREPROCESSING (STOP WORD 
REMOVAL AND STEMMING) 

Stop words does not provide any useful 
information to identify the similarity among the 
pages. So they can be removed to avoid confusions. 
Some common stop words are is, was, are, were, 
what etc., For stop word removal, initially the 
database of stop words is created and the terms 
extracted from the web pages are compared with the 
database of stop words. Stop words found in the 
extracted collection of terms are removed.  

The goal of stemming is to reduce inflectional 
forms and sometimes derivationally related forms of 
a word to a common base form. For instance:  

 
am, are, is be 
car, cars, car's, cars' car 
the boy's cars are different colors the boy 
car be differ color  

 
Stemming usually refers to a crude heuristic 

process that chops off the ends of words and often 
includes the removal of derivational affixes.  

Usually the stemmed words are not meaningful. 

For example, the stemmed word of “computation” is 
“comput”. While stemming the words, two things 
have to be considered.  

i. Different words with the same base meaning 
are converted to the same form  

and 
ii. Words with distinct meanings are kept 

separate.  
For stemming, Porter’s algorithm is used in this 

paper. It is a simple utility that reduces English 
words to their word stems – without the “ing”, 
“ings”; “s” etc., 

Following table shows the sample stemmed 
words: 

 
Table 1. Words and their equivalent base words 

Word Base 
Word 

Word Base 
Word 

Consigned 
Consigning 
Consignment 
Consisted 
Consistency 
Consistently 
Consisting 
Consists 

Consign 
Consign 
Consign 
Consist 
Consist 
Consist 
Consist 
Consist 

Consolation 
Consolations 
Console 
Consoled 
Consoles 
Consonant 
Consorted 
Conspirator 

Consol 
Consol 
Consol 
Consol 
Consol 
Conson 
Consort 
Conspir 

 
 

3.3. TFIDF CALCULATION  
TFIDF is frequently used to construct a term 

vector space model. It evaluates the importance of a 
word in a document. The importance score increases 
proportionally with the number of times a word 
appears in the document but is offset by the 
frequency of a word in the entire collection of 
documents. Suppose there are set of documents, 
each with collection of terms. A simple way to find 
the similarity among those documents using terms is 
to count the number of times a term occurs in a 
document. Calculated count is called as a term 
frequency. However, some terms are more common 
such as “contain” and these terms get more weight 
when term frequency is used. Also the terms like 
“contain” are not good keywords to identify the 
similarity among the documents. On the other side, 
the keywords that occur rarely are good to find the 
relevancy among the documents. Hence an inverse 
document frequency factor is incorporated which 
diminishes the weight of terms that occur very 
frequently in the collection and increases the weight 
of the terms that occur rarely. 

This assigns to term i a weight in document j 
given by 

 
iji,ji, XIDFTFTFIDF =   (12) 
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TFi,j is calculated as:  
 

j

ji,
ji, NT

N
TF =    (13) 

 
Ni,j is the number of times the term i appears in 

the document j and NTj is the total number of terms 
in the document j. 

The inverse document frequency (IDFi) is 
calculated as: 
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where |D| is the total number of documents and |d : ti  
∈ d| is the number of documents in which the term ti 
appears. These TFIDF values and the list of 
documents are then formed as a vector space. 

Term / Document matrix is as follows, 
 Docs / Terms T1  T2  ……. TN 

       D1          TFIDF11   TFIDF12      …….  TFIDF1N 

       D2          TFIDF21   TFIDF22      …….  TFIDF2N 

         . 

       DM          TFIDFM1 TFIDFM2    ….   TFIDFMN 

where N denotes the number of terms and M denotes 
the number of documents. 

 
3.4. DISTANCE CALCULATION 

From the TFIDF matrix, distance from every 
document to every other document in the collection 
is calculated using the Euclidean distance function 
and distance matrix is formed. Euclidean distance 
formula is, 

 

( )∑ = −= n
1i

2
iiji, yxDist   (15) 

 
where i changes from 1 to N. N is the number of 
terms in the vector space. 

Following shows the Distance matrix. 
 

Documents D1  D2  …….     DM 

      D1              DIST11     DIST12  …….  DIST1M 

      D2              DIST21     DIST22 .…….  DIST2M 

         . 

      DM             DISTM1   DISTM2  ……...DISTMM 

 
 

3.5. WEIGHT CALCULATION 
Weight for each link is calculated using the 

distances from the distance matrix. Weight is 
calculated using the following formula, 

 

ij
ij Dist

MW =    (16) 

 
where M is the number of documents, Distij is the 
distance between the documents i and j and the 
values of i and j varies from 1 to M.  

After calculating the weight of each link, weight 
matrix is formed as follows, 
Documents D1  D2  ……. DM 

      D1              W11                W12  …….    W1M 

      D2              W21               W22  …….    W2M 

         . 

      DM              WM1         WM2  ……. WMM 

 
3.6. PAGERANK CALCULATION 

Existing PageRank formula is modified to 
include the calculated weight as, 

 
ijLj ji W)PR(Ddd)(1)PR(D ++−= ∑ ∈     (17) 

 
where Di represents the document for which the 
PageRank is to be calculated, Dj represents the 
document which has out-link to Di and L represents 
the numbers of the documents which has out-link to 
Di. Wij represents the weight of a link between the 
documents i and j.  

 
4. EXPERIMENTAL RESULTS 

For our experiment, 200 queries are considered. 
For all 200 queries, first 200 results from yahoo, 
google and bing are retrieved. Code is written using 
JAVA and SQL Server is used to store the collected 
web documents. The measures such as precision, 
recall and F-measure are used to compare the 
proposed method with the existing methods.  

Initially, the words are extracted from the web 
documents and stop words are removed. Table 2 
shows the stop words considered in this paper. 

 

Table 2. List of Stop words 

a a, able, about, above, according, accordingly, 
across, actually, after, afterwards, again, against, 
ain’t, all, allow, allows, almost, alone, along, 
already, also, although, always, am, among, 
amongst, an, and, another, any, anybody, 
anyhow, anyone, anything, anyway, anyways, 
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anywhere, apart, appear, appreciate, appropriate, 
are, aren’t, around, as, aside, ask, asking, 
associated, at, available, away, awfully 

b be, became, because, become, becomes, 
becoming, been, before, beforehand, behind, 
being, believe, below, beside, besides, best, 
better, between, beyond, both, brief, but, by 

c common, came, can, can’t, cannot, cant, cause, 
causes, certain, certainly, changes, clearly, co, 
com, come, comes, concerning, consequently, 
consider, considering, contain, containing, 
contains, corresponding, could, couldn’t, course, 
currently 

d definitely, described, despite, did, didn’t, 
different, do, does, doesn’t, doing, don’t, done, 
down, downwards, during, 

e each, edu, eg, eight, either, else, elsewhere, 
enough, entirely, especially, et, etc, even, ever, 
every, everybody, everyone, everything, 
everywhere, ex, exactly, example, except 

f far, few, fifth, first, five, followed, following, 
follows, for, former, formerly, forth, four, from, 
further, furthermore 

g get, gets, getting, given, gives, go, goes, going, 
gone, got, gotten, greetings 

h had, hadn’t, happens, hardly, has, hasn’t, have, 
haven’t, having, he, he’s, hello, help, hence, her, 
here, here’s, hereafter, hereby, herein, hereupon, 
hers, herself, hi, him, himself, his, hither, 
hopefully, how, howbeit, however 

i i’d, i’ll, i’m, i’ve, ie, if, ignored, immediate, in, 
inasmuch, inc, indeed, indicate, indicated, 
indicates, inner, insofar, instead, into, inward, is, 
isn’t, it, it’d, it’ll, it’s, its, itself 

j  Just 
k keep, keeps, kept, know, knows, known 
l last, lately, later, latter, latterly, least, less, lest, 

let, let’s, like, liked, likely, little, look, looking, 
looks, ltd 

m mainly, many, may, maybe, me, mean, 
meanwhile, merely, might, more, moreover, 
most, mostly, much, must, my, myself 

n name, namely, nd, near, nearly, necessary, need, 
needs, neither, never, nevertheless, new, next, 
nine, no, nobody, none, nor, normally, not, 
nothing, novel, now, nowhere 

o obviously, of, off, often, oh, ok, okay, old, on, 
once, one, ones, only, onto, or, other, others, 
otherwise, ought, our, ours, ourselves, out, 
outside, over, overall, own 

p particular, particularly, per, perhaps, placed, 
please, plus, possible, presumably, probably, 
provides 

q que, quite, qv 
r rather, rd, re, really, reasonably, regarding, 

regardless, regards, relatively, respectively, right 
s said, same, saw, say, saying, says, second, 

secondly, see, seeing, seem, seemed, seeming, 
seems, seen, self, selves, sensible, sent, serious, 
seriously, seven, several, shall, she, should, 
shouldn’t, since, six, so, some, somebody, 
somehow, someone, something, sometime, 

sometimes, somewhat, somewhere, soon, sorry, 
specified, specify, specifying, still, sub, such, 
sup, sure 

t t’s, take, taken, tell, tends, th, than, thank, thanks, 
thanx, that, that’s, thats, the, their, theirs, them, 
themselves, then, thence, there, there’s, 
thereafter, thereby, therefore, therein, theres, 
thereupon, these, they, they’d, they’ll, they’re, 
they’ve, think, third, this, thorough, thoroughly, 
those, though, three, through, throughout, thru, 
thus, to, together, too, took, toward, towards, 
tried, tries, truly, try, trying, twice, two 

u un, under, unfortunately, unless, unlikely, until, 
unto, up, upon, us, use, used, useful, uses, using, 
usually 

v value, various, very, via, viz, vs 
w want, wants, was, wasn’t, way, we, we’d, we’ll, 

we’re, we’ve, welcome, well, went, were, 
weren’t, what, what’s, whatever, when, whence, 
whenever, where, where’s, whereas, whereby, 
wherein, whereupon, wherever, whether, which, 
while, whither, who, who’s, whoever, whole, 
whom, whose, why, will, willing, wish, with, 
within, without, won’t, wonder, would, would, 
wouldn’t 

y yes, yet, you, you’d, you’ll, you’re, you’ve, your, 
yours, yourself, yourselves 

z Zero 
Table 3 shows the number of terms before stop 

word removal and after stop word removal. 
 

Table 3. Number of Terms before and after Stop word 
removal 

KEYWORDS / 
NUMBER OF 
DOCUMENTS 

NUMBER OF 
TERMS 

EXTRACTED 

NUMBER OF 
TERMS AFTER 

STOPWORD 
REMOVAL 

50 100 200 50 100 200 
APPLE 905 1787 2626 756 1338 1997
MYSQL 452 854 1565 377 688 1233

FREE 
ANTIVIRUS 492 763 1291 408 613 1024

BRIDGE 470 921 1951 397 790 1670
CLUSTER 803 1233 2272 679 1017 1780

DICTIONARY 1134 1469 2229 982 1232 1833
PROCESSOR 483 979 2257 407 809 1760

NIMCET 532 819 1451 423 642 1142
MOUSE 921 1515 2445 766 1237 1973

TAMIL MP3 948 1407 2137 843 1234 1847
MOBILE 630 875 1392 461 646 1088
CAMERA 457 847 1828 358 673 1448

HARDWARE 397 684 1303 346 578 1701
GRID 

COMPUTING 433 653 1394 344 513 1106

NETWORKING 581 929 1780 487 767 1404
ORANGE 653 1490 3019 566 1266 2434

DATASTRUCT
URES 363 763 1349 288 592 1028

DOCOMO 553 1089 1940 460 879 1525
CLOUD 

COMPUTING 381 613 1145 312 516 927 

CAT 645 1298 2274 533 1063 1865
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Once the stop words are removed from the 
collection of extracted terms, stemming is performed 
to convert the terms into their base forms. Table 4 
shows the stemmed terms produced. 

Table 4. Stemmed terms 

comput, jobs, wholesal, latest, processors, cen, person, 
wikipedia, free, encyclopediamediawiki, alpha, wmf, 
tom, new, test, reviewsen, index, follow, 
tomshardwar, review, internet, premier, resourc, imag, 
result, hardware, googl, comprehens, search, web, 
network, cisco, hp, force, f, equip, support, vtqgxb, 
yokbeisw, zppvmeiocllu, alru, indian, brass, export, 
door, india, wrought, kavali, manufactur, builder, 
artwar, iron, knocker, stopper, knob, letter, plate, pull, 
handl, cabinet, fit, casement, stay, hook, bathroom, 
mongery, window, fasten, hing, cabin, lifter, security, 
lock, distributor, hardwar, numer, shutter, solid, centr, 
chain, bell, push, finger, indiamart, amp, diy, supplier, 
build, luxuwhviwbfotmiarv, xnx, njttrh, rbakxcva, 
trader, produc, construct, materi, tool, home, suppli, 
compon, peripher, electr, electro, mechan, trade, 
directory, product, global, marketplac, choos, verifi, 
light, nehru, place, hub, delhi, price, azad, singh, 
onlin, dealer, community, asia, biggest, market, 
directly, updat, e, shop, nehruplac, best, cheapest, 
bazaar, ithub, bb, bc, pc, lcd, monitor, memory, card, 
ram, hard, disk, drive, pen, dvd, combo, writer, 
webcam, digit, camera, mp, player, usb, devic, laptop, 
spare, accessori, batteri, extern, case, printer, classifi, 
import, adaptor, bluetooth, busi, reader, cabl, cd, 
duplic, server, replic, servic, cdrw, cpu, fan, dat, 
tablet, agp, pci, vga, dot, matix, encod, firewir, gpr, 
modem, hdd, id, laser, mobil, ribbon, scanner, 
webhost, wireless, lan, zip, intern, hous, exterior, 
interior, set, signag, switch, plug, cover, coat, hat, 
curtain, tie, electrophorat, plant, aluminum, forg, 
stoper, victorian, georgian, item, quality, microsoft, 
page, open, ccna, certification, job, technic, thousand, 
industry, naukri, apply, bangalor, mumbai, hyderabad, 
kolkata, chennai, pune, citi, career, site, softwar, 
account, time, bank, financ, center, document, day, 
gener, cach, creer, post, resum, develop, direct, 
richard, stanley, dylan, mcdermott, stacey, travi, john, 
lynch, visit, imdb, photo, showtim, cast, crew, plot, 
summary, comment, discuss, taglin, trailer, poster, 
messag, board, user, rate, synopsi, credit, book, 
hwbindex, mediawiki, main, adapt, circuit, connector, 
consol, inform, yahoo, directorylist, devot, includ, 
articl, tutori, overclock, idc, compatibility, list, googl, 
gt, slashdot, nerd, stuff, matter, specif, olpcmediawiki, 
olpc, translat, w, battery, power, dcon, display, ec, 
especificacion, etoy, pcquest, hardwarethi, entir, 
gamut, cut, edg, technolog, launch, applic, stori, focu, 
fast, pace, track, evolut, linux, os, code, program, pcq, 
annual, magazin, uncompl, complic, secret, 

 
Once the useful terms are extracted, TFIDF 

matrix is formed. Table 5 shows the sample TFIDF 
matrix. 

Table 5. TFIDF Matrix 

Docs/  T1  T2  T3 T4  T5  T6  T7  T8 T9  T10       
Terms 
D1     0.2   0   0.8  0.3  0.1 0.1 0.4   0    0.1  0.1       
D2     0.5   0     0    0    0    0      0   0.1 0.1  0.1       
D3     0.2   0     0    0    0    0      0    0    0     0      
D4     0.1   0     0    0   0.5  0    0.3   0    0     0      
D5     0.8   0     0    0    0    0      0    0    0     0      
D6     0.6   0   0.7  0.3  0    0      0    0    0     0       

 
From the resultant TFIDF matrix, distance 

between every two document is identified using 
Euclidean function and filled in the distance matrix. 
Table 6 shows the distance matrix formed. 

Table 6. Distance Matrix 

Docs D1    D2    D3      D4      D5      D6      
D1     0.0  5.42   1.2     4.3     4.3      16.0    
D2    5.42  0.0   4.96   1.8     1.4       21.3    
D3    1.2   4.96    0.0    3.49   3.6      17.5    
D4    4.3   1.8    3.49    0.0   20.0      34.8    
D5    4.3   1.4     3.6    20.0   0.0      20.58  
D6   16.0 21.3   17.5   34.8  20.58      0.0     
 
Using the distance matrix, weight of each link is 

identified and filled in the weight matrix. Table 7 
shows the weight matrix formed. 

Table 7. Weight Matrix 

Docs D1     D2        D3        D4       D5      D6      
D1    1.0    35.29    179.8    44.5     44.5    11.35   
D2   35.29  1.0       44.0   177.0    177.56  8.53     
D3  179.8  44.0      1.0     59.73     59.46   10. 63    
D4   44.5   177 0    59.73    1.0      8.95    5. 64          
D5   44.5   177.56  59.46    8.95     1.0      8.62       
D6  11.35  8.53       10.63   5.64     8.62     1.0       

 
Using the weight values, the rank of a page is 

calculated by adding these weights with the existing 
PageRank formula.  

Relevancy of the proposed method is evaluated 
using the measures precision, recall and F-Measure. 
Precision and Recall are defined in terms of a set of 
retrieved documents and a set of relevant 
documents. Precision is defined as the number of 
relevant documents retrieved by a search divided by 
the total number of documents retrieved by that 
search, and recall is defined as the number of 
relevant documents retrieved by a search divided by 
the total number of existing relevant documents. 
Every result retrieved by a search was relevant if a 
precision is 1 and all relevant documents are 
retrieved by the search if a recall is 1. F-measure is 
computed by combining the values of precision and 
recall. 
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Precision is calculated as, 
 

Documents} {Retrieved
Documents} {RetrievedDocuments}{Relevant 

Precision
I

=
 (18) 

 
 
Recall is calculated as, 
 

Documents}{Relevant 
Documents} {RetrievedDocuments}{Relevant 

Recall
I

=
 (19) 

 
F-Measure is calculated as, 
 

RecallPrecisio
Recall XPrecision 2XMeasure-F

+
=       (20) 

 
Proposed technique is compared with existing 

algorithms by considering different page sizes and 
observed that the proposed work is producing more 
f-measure when compared to existing ranking 
algorithms. 

Figure 1 and Figure 2 show that the precision and 
recall of the proposed method are better than the 
existing methods. 
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Fig. 1 – Precision Vs Number of Documents 

 
Recall vs Number of Documents
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Fig. 2 – Recall Vs Number of Documents 

Figure 3 show that the proposed method is 
gaining more F-Measure than other ranking 
algorithms such as PageRank, HITS, SALSA and 
Weighted PageRank at different page sizes.  
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Fig. 3 – F-measure Vs Number of Documents 

 
5. CONCLUSION 

In this paper, a new method is proposed to order 
the search results based on the similarity among the 
linked documents. In the existing ranking 
algorithms, rank of a page is equally distributed to 
the pages to which it has a link and no weight is 
assigned to the links by looking at the similarity 
among the linked documents. Normally, a page is 
more important if it has more number of inlinks 
from the documents which are similar to it. Using 
this concept as a base, we introduced a method to 
assign weight to each link. Results show that the 
proposed method makes more relevant documents to 
appear at the beginning of a list of returned results 
when compared to other existing methods.  

 
6. FUTURE WORK 

This algorithm calculates similarity among the 
linked documents in addition to PageRank value. 
Due to this, it takes much time to compute the rank 
of the pages. This computational time can be 
reduced by optimizing the algorithm. Avoiding web 
content spamming can be taken as a future work 
since the performance of the proposed method may 
be affected by introducing identical documents. 
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