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Abstract: Ellipsoidal approximation of the ellipsoid and hyperlayer crossing has been considered as a basis of the 
algorithm of states estimation of the linear controlled system whose set of possible states is represented with an 
ellipsoid, and observations – with a hyperlayer. This representation is considered as an analogue of Kalman filter. The 
conditions of a priori system state and a posteriori measurement information compatibility and sensitivity of the 
algorithm to a choice of its parameters have been investigated. Dependence of the system state estimate improvement 
on a relative width of the hyperlayer of a set of observations has been shown. The obtained algorithm in comparison 
with the known solutions at minor degradation of accuracy is much easier in realization and stabler in operation from 
the standpoint of prior guesses violation. 
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1. INTRODUCTION 
In this work the robust algorithm of the 

guaranteed estimation of a set of possible states of 
the linear controlled system is developed and 
investigated [1]. In this article we mean conformity 
of the algorithm with two conditions by the 
robustness property: first, conservation of 
operability at the violation of prior guesses of the 
observable object parameters; secondly, “non-
deterioration” of the state estimate of the object 
during estimation. For this purpose in the algorithm 
intermediate and final results are checked against 
prior guesses and a current estimate of the system 
state. At the violation of prior guesses or estimate 
deterioration the algorithm parameters are redefined. 
A result of work of the algorithm can be 
geometrically represented as an ellipsoid 
approximating the crossing of a priori ellipsoidal set 
of attainability of the linear controlled system [1] 
and a hyperlayer representing according to the data 
of observation a set of possible states of the 
controlled system limited by two parallel 
hyperplanes. In practice such a problem arises, for 
example, at the accelerated alignment of 
gyrostabilized platforms under conditions of 
statistical uncertainty of external influences; 

correction in the complex orientation and navigation 
systems [2-7] when an accuracy class of these 
devices does not enable to achieve marked 
improvement of quality of work by using data 
processing complex algorithms.  

An approximating ellipsoid minimum volume is 
taken as a criterion of optimality. This criterion is 
convenient because of invariance of affine 
transformations relative to initial sets for obtaining 
of a minimum ellipsoid [1]. The parameters of the 
minimum volume ellipsoid circumscribed about a 
spherical layer or a segment have been evaluated in 
[8] for a hemisphere and in [9] for a hyperlayer. In 
[10] we obtain the algorithm of ellipsoidal 
approximation of the ellipsoid and hyperplane 
crossing where an approximating ellipsoid volume 
dependent on several parameters is expressed 
through the function of these parameters called a 
step of algorithm. The further works have been 
devoted to the development of universal and more 
convenient algorithms for obtaining of the specified 
approximation. In work [11], for example, for 
obtaining of the parameters of the minimum volume 
ellipsoid approximating the ellipsoid and hyperlayer 
crossing a quadric equation should be solved. 

In [12] the algorithm in which a step of algorithm 
of approximating ellipsoid obtaining has only two 
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values depending on a degree of the hyperlayer and 
initial ellipsoid crossing has been suggested. Though 
it greatly simplifies calculations, but a possibility of 
specification of the system state ellipsoidal estimate 
considerably decreases, respectively. In [13] we 
have obtained a condition of step choice for 
construction of the approximating ellipsoid when an 
initial ellipsoid and a hyperlayer only touch each 
other. Dependence of improvement of the system 
state estimate on a relative width of the hyperlayer 
has been shown. 

 
1. PROBLEM DEFINITION 

jE  system state ellipsoid is set as 

}1)()(:{ 1T ≤−− −
jjjjjj xxHxxx    (1) 

jj Ex ∈ , Tj 0∈ , )(,...,,1 ∞<= kkj  is discrete 

time; n
jj RXE =⊂  is a compact set of possible 

values of the initial state, jx  and 0T >= jj HH  are 
set n  is a measuring vector and )( nn × is a matrix, 
respectively. The jE  change in the course of time is 
determined with dynamic system properties [13]. 

Watch equation 

...,2,1,,T =≤+= jcxhy jjjj ξξ ,      (2) 

where 1Ry j ∈ ; nRh∈ , 1=h  is a measuring 

device parameter; 1Rj ∈ξ  is a restricted 
measurements interference; 0≥c  is a set constant. 
The equation (2) in nR  space determines the 
hyperlayer 

})(:{ 22T cxhyxS jjjj ≤−= . (3) 

On the basis (1) and (3) according to work [13] 
the guaranteed esmimate jjj SEE ∩⊃+1  
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−=∆  is a distance from the centre of the 
initial ellipsoid to the hyperlayer middle; 

n
j Rh ∈  is a parameter of the observer; jx  is a 

centre of the initial ellipsoid; 
1+jx  is a centre of the approximating ellipsoid; 
If a condition of a priori ellipsoid and observation 

compatibility is violated: σχ ≥+1  scaling should 
be performed jjj HH 2

1 σ=+ . 
A condition of observations informativity [12]: 
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Fig. 1 for case 2=n  shows the crossing of jE  

ellipsoid and jS  observations hyperlayer, and 
approximation of the crossing of abscissas by the 
ellipsoid 1+jE .

j∆  

jE  

1+jE  

jS  

 
Fig. 1 – Ellipsoidal approximation of ellipsoid and 

hyperlayer crossing 

 
2. APPROXIMATION OF CROSSING OF 

THE ELLIPSOIDAL SET OF 
ATTAINABILITY AND HYPERLAYER BY 

THE ELLIPSOID 
A simplified step is used 



Aleksey V. Sholokhov / Computing, 2011, Vol. 10, Issue 3, 244-248 
 

 246 

( )( ) 222 1/1 σχστ nn +−+=   (10) 

( )( ) 2222 /1 ennq χχσ −+= .  (11) 

η  parameter corresponds q  parameter in [11]  

( ) 2222 )1(2/)12()(1 enDn χχση −+−−−= (12) 

)1)(()1(4))1()12(( 222222 −−−−−−−= σχχσχ nnnD
 boundχ  boundary half-width of the hyperlayer has 
been determined. The “observation result 
cancellation” takes palce with it. It is the same for 
(11) and (12) 

( ) nnbound 2/1 2σχ += .          (13) 

Let us assume 1=+ χσ . Then with 

nn 2/)1( −=σ  we shall obtain maximum half-
width of the hyperlayer 

nn 2/)1( +=χ        (14) 

Let us assume in expression (13) 0=σ . Having 
directed ∞→n  we shall obtain from (13) and (14) 
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Fig. 2 and 3 show the diagrams of observations 
informativity dependence on hyperlayer width 
(ratios 1

1det −
+ jj HH ) for 2=n case. In Fig. 2 the 

middle of observations hyperlayer passes the centre 
of the initial ellipsoid, i.e. 0=σ . In Fig. 3 – 

nn 2/)1( −=σ . The hyperlayer width χ  is set by 
the abscissa axis, and by the ordinate axis – a value 
of informativity criterion (9). The full line 
corresponds to a step by formula (11), the dash line 
– to (12). 
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Fig. 2 – Observations informativity change depending 

on 0=σ hyperlayer width 
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Fig. 3 – Observations informativity change depending 
on nn 2/)1( −=σ  hyperlayer width 

It follows from (15) that with n  growth the 
requirements for accuracy of the observer grow as 
well. 

The observable system states ellipsoid parameters 
(including an ellipsoid volume) will be connected 
with the measuring device parameters, measurement 
interference, system properties and external 
disturbance by means of the following dependence 

ncHhh 2T ≥    (16) 

If h  vector is an eigenvector or close to such a 
vector of the matrix corresponding to the least 
eigenvalue of H [16] matrix, we shall have a small 
volume of the approximating ellipsoid with small 
uncertainty by one phase coordinate corresponding 
to the least eigenvalue, and with greater uncertainty 
by other phase coordinates. 
 

3. MODELLING 
There is a linear controlled system  

dLBuAxx jjnjjj ≤++=+ ζζ ,1 , 00 Ex ∈ ,  (17) 

}1)()(:{ 00
1

0
T

0000 ≤−−= − xxHxxxE . (18) 

where A  − )( nn× is a matrix; nL  and B  − n are 
measuring vectors. The pair ),( BA  is controlled 
[15]; 1Rj ∈ζ  is a scalar disturbance restricted with 

0≥d  set constatnt; 0x  и 00
T
0 >= HH  known 

n is a measuring vector and )( nn × is a matrix. 
Controls Ru j

1∈  are set at the whole interval T  

},{ 1 TjRu j ∈∈ , 11 −− += jjj BuxAx  (19) 

}1)()(:{ 1T ≤−−= −
jjjjjjj xxHxxxE  (20) 
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The following parameters are taken for the 
model: 
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0 =x ; [ ]2,2,1T

0 −=x ; ]1,0,0[T =nL ; 

]1,0,0[T =B ; ]0,0,1[T =h ; 5=ju , 1,0=c . 
Modelling has been carried out in MATLAB 

according to [13]. In the process of estimation a 
discontinuous change of the system dynamic 
properties by means of replacement of the 3d line of 
A  matrix to ]3,192,026,0[3 −=a  has been 

simulated. The disturbing influence bound has been 
increased at the same time: 2=d . And the 
algorithm has operated with A initial matrix and 
bound 1=d . 

Fig. 4 shows a membership function value 
without change of observable system dynamics, but 
with scaled-up disturbance bound. The full line is 
the changed observable system, the dash line is 
unchanged system. 
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Fig. 4 – Membership function – check of fulfillment of 

conditions (20) for the observable system with a 
scaled-up disturbance bound 

Fig. 5 shows a membership function value with 
changed dynamics of the observable system and 
scaled-up disturbance bound. The full line is a 
membership function for the changed observable 
system, the dash line – for the unchanged system. 
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Fig. 5 – Membership function – check of fulfillment of 

conditions (20) for the system with a scaled-up 
disturbance bound and changed dynamics 

 
4. CONCLUSION 

By the results of algorithm operation modelling 
and investigations of dependence between its 
parameters and parameters of the observable system 
such algorithms can be recommended for application 
in case of small spatial dimension of system states. 
For the same reason possible algorithm 
modifications shall be checked on deterioration of 
observations informativity i.e. on decrease in 
sensitivity to useful signal extraction from the 
observer “noise”. 
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