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Abstract: This paper presents an algorithm for RSSI fingerprint positioning based on Euclidean distance for the use in 
a priori existing larger and dynamically changing WLAN infrastructure environments. Symptomatical for such 
environments are changing sets of base stations for different calibration points and for calibration phase and 
positioning phase. The presented algorithm has an accuracy of 2.06m median location estimation error. The algorithm 
uses four threshold parameters to adapt the calculation to the specific measuring environment  

Furthermore the reduction of calibration effort is investigated. It is shown that an enlargement of the calibration 
grid size from 1m to 6m increases the median location estimation error from 2.06m to 3.5m. Regular calibration 
measurements include measurements in four rectangular bearings. Reducing the number of calibration bearings results 
in less calibration effort, but worsens estimation quality. 
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1. INTRODUCTION 
For location based services (LBS) positioning 

techniques are of essential value. In outdoor 
environments satellite positioning systems like 
Global Positioning System (GPS) can be used easily. 
In indoor environments GPS is not available. For 
indoor applications, e.g. autonomous robots or 
mobile museum guides, which have to determine 
their current position independently, different 
technologies are used [1] [2] [6]. In this context 
Wireless Local Area Networks (WLAN) may be 
used. One advantage is the possibility of using 
existing WLAN environments. Measurements of the 
Received Signal Strength Index (RSSI) of several 
base stations offer the opportunity to determine the 
current position using fingerprinting and Euclidean 
distance algorithm (EDA). In large areas of 
measurement or in dynamically changing 
environments the basic static EDA using always the 
same set of base stations (BS) has to be adapted. The 
set of received BS may change between calibration 
points (CP) or the sets of a specific CP may change 
from calibration phase to positioning phase. 

This paper addresses the following questions on 
the use of EDA in large and dynamically changing 
WLAN environments: 

• How to handle different sets of base stations 
measured at one calibration point during 
calibration phase and positioning phase? 

• How to handle varying sets of base stations 
between calibration points measured in 
calibration phase? 

• How to handle ‘unreliable’ RSSI-values? 
• How to detect and handle outliers in position 

estimation? 
• What is the accuracy of the positioning algorithm 

under these circumstances? 
• How can calibration effort be reduced? 

An adapted and improved version of the basic 
EDA is presented to handle the first four questions 
mentioned above. Moreover, the problem of 
reducing calibration effort is investigated.  

The research is based on data gathered during a 
systematic field trial at a building of University of 
Applied Sciences and Arts in Dortmund, Germany. 

 
2. RELATED WORK 

Ladd et al. [3] used a notebook for determining 
the position by measuring the received signal 
strength indication of several base stations. For 
calculation they used fingerprints and a Bayesian 
inference algorithm. Experiments were conducted by 
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a human operator carrying a notebook with wireless 
Ethernet card with a modified standard Linux kernel 
driver. The calibration grid size was 3m. The 
algorithm reported positions with a distance of up to 
1.5m to the measuring position.  

Retscher et al. [4] developed the IPOS system 
using RSSI-fingerprints as well. Their test bed was 
an office building and a tablet-pc was moved from 
each position to the next either in stop-and-go or 
kinematical mode. They focused on determining 
whether a user is located inside a room or not and 
whether one or two calibration points within one 
room are sufficient. 

Teuber et al. [7] again used fingerprinting and the 
method of minimal Euclidian distance together with 
fuzzy logic post processing. Their test bed was an 
empty airport hangar. Accuracy of two-dimensional 
positioning was 4.47 m using Euclidian distance 
alone. With Fuzzy logic post processing the 
accuracy improved to 3 m.  

A positioning system for industrial automation 
with automatic calibration was developed by Ivanov 
[2]. This system is able to perform automatic 
measurement and model calibration so that no 
manual measurements are necessary. The algorithm 
has a mean accuracy of 3.7 m with standard 
deviation of 3.4 m using automatic calibration. If 
manual calibration was used the mean accuracy 
would be 3.1m with a standard deviation of 2.6m. 

The Ekahau Positioning Engine (EPE) is a 
commercially available software using RSSI based 
WLAN indoor positioning. According to the 
manufacturer's instructions [1] the engine combines 
RSSI pattern recognition together with an attempt to 
include the user’s history (boundary conditions like 
allowed paths and speed). Determination of the 
current two-dimensional position is possible with an 
accuracy of 1-5 m depending on the environment. 
The system is able to determine the discrete third 
dimension (floor level) as well. 

Another approach for getting reasonable accuracy 
in positioning as well as accurate continuous 
information about the current position on the z-axis 
is shown in Woodman and Harle [8]. They use a 
foot-mounted inertial sensor combined with WLAN 
based RSSI algorithms.  

 
3. ALGORITHM 

3.1. BASIC EUCLIDEAN DISTANCE 
ALGORITHM 

The Euclidean distance algorithm is a 
fingerprinting algorithm often used for WLAN 
localization [5]. The algorithm needs a set of RSSI-
tuples of several base stations measured at 
calibration points with known positions stored in a 
data base. During the positioning phase a RSSI-tuple 

of several base stations is measured at a point whose 
position has to be determined. A similarity measure 
(Euclidean distance) between the current positioning 
tuple and a calibration tuple is calculated using 
Equation (1). A small d indicates a high similarity. 
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(RSSIci: RSSI value of BS i in calibration phase; 
RSSIpi: RSSI value of BS i in positioning phase; n: 
number of BS) 

Given a RSSI-tuple of positioning phase from a 
point with unknown position the Euclidean distance 
d is calculated for all calibration points using the 
corresponding RSSI-tuples. The calibration point 
with the smallest Euclidean distance is assumed to 
be the measuring position of positioning phase. For 
positioning it is also common to use a weighted 
average of the coordinates of m calibration points 
with smallest d. 

Within permanent environments where all base 
stations can be received at all calibration points the 
number of received base stations n is constant. The 
basic EDA can be used with good results. However, 
in dynamically changing environments this basic 
algorithm has to be adapted. Dynamically changing 
means either varying sets of base stations in 
calibration phase and positioning phase for a specific 
calibration point or changing sets of received base 
stations from one to the next calibration point, i.e. n 
is not constant anymore. The Euclidean distance d 
calculated according to Equation (1) may not 
indicate a similarity measure between tuples from 
calibration and positioning phase any more. 

 
3.2. ADAPTED EUCLIDEAN DISTANCE 
ALGORITHM 

In large and dynamically changing WLAN 
environments RSSI-tuples of calibration and 
positioning phase may comprehend different subsets 
of received base stations.  

Calculating the Euclidean distance d for a 
calibration point the adapted EDA takes into account 
only those BS which have RSSI-values in both 
calibration and positioning RSSI-tuples. This 
number m of matching BS may vary between 
calibration points. If for a measuring point a BS is 
not received in either calibration or positioning 
phase this BS is not considered for calculating d. 

Thus, the calculation of d is adapted to a varying 
number of BS considered (Equation (2)), i.e. d has to 
be normalized according to the number of matching 
BS m:  
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(RSSIci: RSSI value of BS i in calibration phase; 
RSSIpi: RSSI value of BS i in positioning phase; m: 
number of matching BS) 

Different subsets of received BS in calibration 
and positioning phase for a measuring point and a 
calibration point may occur in two cases: 

Case 1: A BS was measured in calibration phase 
but not in positioning phase 

Case 2: A BS was measured in positioning phase 
but not in calibration phase 

There are two reasons which may lead to the 
occurrence of Case 1. Either the BS was operating 
during calibration phase and not operating during 
positioning phase or the measurement of calibration 
phase happened within the transmission range of the 
BS and the measurement of positioning phase 
occurred outside the transmission range of the BS. If 
this case occurs the BS under consideration is not 
included in calculating d according to equation (2). 

Case 2 may occur only if the measurement at the 
calibration point under consideration was 
accomplished beyond the transmission range of the 
BS. If this case occurs the algorithm distinguishes 
two sub cases. If the RSSI of the BS is located above 
a threshold value (SW3), it is assumed that the 
calibration measurement was accomplished beyond 
the BS transmission range. Thus, the spatial distance 
between measuring point and calibration point is 
larger than the radius of the BS transmission range. 
Consequently, the calibration point is excluded as a 
position candidate. Including such a CP may result 
in large outliers, i.e. measuring point and most 
'similar' calibration point have a large spatial 
distance despite a minimal d.  

 
3.3. 'UNRELIABLE' RSSI VALUES 

There are some other settings, which may 
produce large outliers. Cases 3 and 4 describe these 
phenomena. 

Case 3: The number of matching BS is too low. 
Position estimation needs sufficient information 

in terms of matching BS. The adapted EDA searches 
for calibration and positioning tuple combinations 
where the number of matching BS equals the 
number of measured BS in the positioning tuple. If 
no calibration tuple meets this condition, the 
necessary number of matching BS is reduced by one 
and the check is performed again for all calibration 
points. This procedure is repeated until the condition 
is met or until the searched number of matching BS 
is reduced to 0. Within the latter case, no Euclidean 
distance can be calculated, i.e. the measurement of 
positioning phase cannot be accomplished within the 

calibration area. 
Measurements of the later presented field trial 

show that a defined minimum number of matching 
BS is necessary for excluding large outliers. The 
parameter NBSmin is introduced describing the 
minimum number of matching BS needed for 
calculation of the Euclidean distance d. If the 
number of matching BS is smaller than the 
parameter NBSmin the calibration point is not taken 
into account for positioning. A value of 4 for 
NBSmin seems to be reasonable (see Results). 

Case 4: RSSI-values of positioning and 
calibration tuples are too low. 

Due to signal attenuation, the signal strength of a 
transmitted signal distance to the sender. For low 
RSSI-values the function has a small angle of slope, 
i.e. the function is insensitive against variations of 
distance. Consequently, RSSI-tuples consisting of 
low RSSI-values are less reliable than tuples with 
higher RSSI-values, i.e. position estimations based 
on low RSSI-values may result in higher location 
estimation errors. Taking this into account the 
adapted EDA works with a filtering system based on 
two threshold values SW1 and SW2 with SW1 < 
SW2. First, corresponding calibration and 
positioning tuple are checked for RSSI-values lower 
than threshold SW1. The corresponding BS is 
excluded from the set of matching BS and is not 
taken into account for calculation of d according to 
equation (2). Second, those BS where both 
calibration and positioning tuples have RSSI-values 
lower than threshold SW2 are excluded from 
calculation of d according to equation (2). The filter 
leads to a lower number of matching BS used for 
position estimation. However, due to the filtering of 
'unreliable' values causing outliers the quality of 
location estimation measured by median location 
estimation error and maximum location estimation 
error increases. 

The pseudo code of the adapted EDA is shown in 
Fig. 1. 
// variables 
RSSIpos: positioning RSSI-tuple 
RSSIcal: calibration RSSI-tuple 
 
SW1: threshold value 1 
SW2: threshold value 2 
SW3: threshold value 3 
 
d: Euclidean distance 
 
NBSmax: total number of BS 
NBSmin: minimal number of BS 
        used for calculation of ED 
NBSused: number of BS used 
// algorithm for RSSIpos and RSSIcal 
d = 0 
NBSused = 0 
CPOK = true   // Calibration Point OK 
For j=1, NBSmax  // Loop over all BS 
  IF (RSSIposj contains value AND 
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      RSSIcalj contains value) 
  THEN 
    IF (RSSIposj > SW1 AND 
        RSSIcalj > SW1) 
    THEN 
      IF (RSSIposj > SW2 OR 
          RSSIcalj > SW2) 
      THEN 
        d += (RSSIcalj-RSSIposj)² 
        NBSused ++ 
      ENDIF 
    ENDIF 
  ELSE 
    IF (RSSIposj contains value) 
    THEN 
      IF (RSSIposj > SW3) 
      THEN 
        //  CP  excluded from positioning 
        CPOK = false 
        Goto NEXTCP 
      ENDIF 
    ENDIF 
  ENDIF 
ENDFOR 
NEXTCP: 
IF (CPOK AND NBSused > NBSmin) 
THEN 
  d = SQRT(d)/NBSused 
ENDIF 

Fig. 1 – Pseudo code of adapted algorithm 

 
4. TESTBED 

For evaluation a series of measurements in a 
building at University of Applied Sciences and Arts 
is carried out. The building is equipped with a 
WLAN infrastructure for data communication. In 
order to evaluate the algorithm under non-laboratory 
conditions this infrastructure is used and no 
additional BS are installed. In total 24 different BS 
were received during calibration and used for 
positioning. 

The measurements are taken on 3 floors (first 
floor, second floor and third floor) each consisting of 
a corridor area and a foyer area. A map of the first 
floor with the basic calibration grid is shown in Fig. 
2. All three floors have an identical layout. The 
corridor areas are approx. 2m in width and 36m in 
length, the foyer area is approx. 21m in width and 
12m in length. 

For calibration a basic rectangular 1m x 1m grid 
is used. Every node presents a calibration point. 

During calibration phase at a calibration point 
RSSI-values from received BS are simultaneously 
recorded. For each calibration point 15 successive 
measurements are accomplished. At every 
calibration point measurements in four bearings (0°, 
90°, 180°, 270°) are carried out to allow for the 
influence of the human body. The map is oriented 
with 0° on the upper edge and 90° on the right edge 
of the map. After each measurement the median of 
the recorded RSSI-values for each BS is calculated. 
The tuple is stored in a database together with the 
corresponding timestamp and bearing. 

During positioning phase 20 successive 
measurements of RSSI-tuples are carried out in one 
direction at 78 randomly chosen points within the 
calibration area. The adapted EDA iss applied using 
'single RSSI-values'. 

Figure 2 shows the 1m x 1m grid of calibration 
points. This basic grid is used for investigating the 
question for the accuracy of the adapted EDA. 

For analyzing how calibration effort can be 
reduced different calibration grids are simulated 
using subsets of the basic grid. Within the foyer 
these subsets are quadratic, within the corridors the 
subsets consist of a straight line of calibration points 
having a distance of 2m, 3m, … , 6m. For each of 
these calibration grids the adapted EDA is applied 
using 'single RSSI-values' and four bearings. 

Furthermore, the influence of the number of 
bearings used for calibration on the location 
estimation quality is investigated. This is achieved 
using the basic calibration grid with 1m x 1m grid 
size. The evaluation is performed for all 
combinations of 1, 2, 3 and 4 calibration bearings. 

All measurements are accomplished using a 

personal digital assistant (PDA: HP iPAQ 114) with 
Windows Mobile operating system. A capture 
software ENDIMNA based on .NET Compact 
Framework records the RSSI-values and MAC 
addresses of WLAN BS (Access Point) within reach. 
To allow for the influence of the human body all 
measurements are carried out by a person holding 
the PDA in the hand. 

 
Fig. 2 – Map of first floor with calibration grid 
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5. RESULTS 

The algorithm presented above was used for 
answering the following questions: 
• How can incorrect location estimations be 

detected and excluded (outliers)? 
• How does NBSmin, the minimal number of BS 

used for calculating the Euclidean distance at one 
calibration point, influence the accuracy of 
position estimations? 

• What is the accuracy of positioning using the 
adapted EDA? 

• How can the calibration effort be reduced? 
 

5.1. OUTLIERS 
As pointed out while presenting the adapted 

algorithm outliers, i.e. large deviations of measuring 
position during positioning phase and estimated 
corresponding calibration point, occur under several 
circumstances: 

a) The number of BS used for positioning 
(NBSmin) was too low. 

b) RSSI-tuples used for positioning consist of 
very low RSSI-values (RSSIposj < SW1 OR 
RSSIcalj < SW1). 

c) RSSI-tuples used for positioning both from 
calibration and positioning phase include low RSSI-
values (RSSIposj < SW2 AND RSSIcalj < SW2) 

d) RSSI-tuple of positioning phase includes 
RSSI-value (> SW3) of BS not included in RSSI-
tuple of calibration phase. 

 
Table 1: Threshold parameter set for evaluation 

Threshold parameter Value 
NBSmin 4 

SW1 -85 db 
SW2 -80 db 
SW3 -75 db 

 
Drill down of data and thorough examination of 

outliers and their underlying measurements show 
that these four constellations may be the reasons for 
large outliers. Table 1 shows a selection of 
parameters leading to a drastic reduction in outliers. 
For 10 out of 1100 calculations the location 
estimation error was larger than 15m. 

 
5.2. MINIMAL NUMBER OF BS USED 
(NBSMIN) 

Fig. 3 shows the dependency of median location 
estimation error on the minimal number of BS used 
for positioning (NBSmin). It is shown that the 
median location estimation error decreases from 
2.5m to 1.8m if the minimal number of BS used is 

increased from 1 to 7. 
 

 
Fig. 3 – Median location estimation error vs. minimal 

number of BS used (NBSmin) 

 
However, if the minimal number of BS necessary 

for positioning is increased the number of calibration 
points excluded from positioning increases as well. 
Fig. 4 shows that with NBSmin = 4 only 2%, but 
with NBSmin = 7 83% of calibration points. 

 

 
Fig. 4 – Excluded calibration points vs. minimal 

number of BS (NBSmin) 

 
5.3. ACCURACY OF POSITIONING 
USING ADAPTED EDA WITH RSSI 
SINGLE VALUES 

The cumulative distribution of location 
estimation errors of position estimation with adapted 
EDA using the 1m x 1m basic calibration grid, four 
calibration bearings and single values is presented in 
Fig. 5 . 

Fig. 5 shows that 50% of location estimation 
errors lie below 2.12m (median), 90% of values lie 
below 7m and 95% below 9.25m. Still there is a 
small number of heavily incorrect location 
estimations (10 out of 1100). The maximum location 
estimation error is 45.04m. 

For these evaluations the floor level (z-
coordinate) was estimated correctly in 97.45% of 
cases.  
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Fig. 5 – Cumulative distribution of location estimation 

error 

 
5.4. ACCURACY OF POSITIONING 
USING ADAPTED EDA WITH MOVING 
MEDIAN 

The results presented above are based on single 
values considering the calibration point with 
smallest d, i.e. for every positioning point there are 
20 position estimations. These estimations may 
include severe deviations from the original position. 

As one possible option for reducing the influence 
of heavily incorrect position estimations a moving 
median filter can be applied on the coordinates of 
the estimated positions, i.e. the median of the k 
recently estimated position coordinates is 
determined. Since in our setting there is no 
continuous positioning, we calculated the median of 
the coordinates of 20 single position estimations for 
all 78 positioning points. Hereby we simulated a 
moving median filter as it would work during 
continuous positioning. 

Fig. 6 shows the cumulative distributions of both 
the location estimation error based on single value 
estimation and based on median coordinate 
estimation. The cumulative distributions show, that 
in particular the large deviations are reduced. 
 

 
Fig. 6 – Cumulative distributions of location 

estimation error 

 

Table 2 shows that the median location 
estimation errors in both cases are nearly identical 
(2.12 and 2.06m). The 90% value of LEE however 
decreases from 7.00m to 5.25m, the 95% location 
estimation error decreases from 9.25m to 7.00m. 
The maximum location estimation error shows the 
most dramatic changes. It decreases from 45.04m to 
10.51m. 

Table 2: Location estimation error 

 

Based on 
Single 
values 

Based on 
Median 

value 
Median LEE (m) 2.12 2.06 
90% LEE (m) 7.00 5.25 
95% LEE (m) 9.25 7.00 
MAX LEE (m) 45.04 10.51 
(LEE: Location estimation error) 
 

5.5. REDUCING CALIBRATION EFFORT 
The calibration usually takes a large amount of 

time when installing a WLAN positioning system. 
There are three factors which influence the amount 
of time spent for calibration: 
• Calibration grid size. i.e. the number of 

calibration points 
• Number of bearings per calibration point 
• The number of recorded RSSI-tuples per 

calibration point and per bearing 
To allow for natural variation of RSSI-values 

over time the amount RSSI-tuples for each 
calibration point and bearing cannot be reduced. 

Fig. 7 presents the median location estimation 
error drawn over the edge length of the calibration 
grid. It is shown that the median location estimation 
error increases with increasing calibration grid size. 

 

 
Fig. 7 – Median location estimation error vs. edge 

length of calibration grid 

 
Using the basic 1m x 1m grid the median 

location estimation error is 2.12m. The error 
increases to 2.69m when the edge length is increased 
to 2m. The amount of calibration points is decreased 
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approx. by a factor of 4. The error increases to 
3.64m when the edge length is increased to 6m. The 
number of calibration points decrease approx. by a 
factor 36. 

Table 3: Calibration bearings vs. median location 
estimation error 

Combination of bearings Median location 
estimation error (m) 

0° 2.50 
90° 2.92 
180° 2.55 
270° 2.70 
0°; 90° 2.55 
0°; 180° 2.18 
0°; 270° 2.18 
90°; 180° 2.55 
90°; 270° 2.55 
180°; 270° 2.50 
0°; 90°; 180° 2.50 
0°; 90°; 270° 2.50 
0°; 180°; 270° 2.06 
90°; 180°; 270° 2.50 
0°; 90°; 180°; 270° 2.12 

 
Furthermore the influence of the number of 

calibration bearings on the location estimation error 
was investigated. 

Table 3 shows the median location estimation 
errors depending on different combinations of 
bearings used for calibration. 

It can be seen in Table 3 that with all four 
directions the median location estimation error is 
2.12 m while it increases to a maximum of 2.9m 
when using only one direction. It can also be seen 
that the best result can was reached with the 
calibration directions of 0°, 180° and 270°.  

 

 
Fig. 8 – Median location estimation error vs. number 

of bearings in calibration phase 

 
Figure 8 presents the calculated median location 

estimation errors vs. number of used bearings in 
calibration phase. There is a decrease from approx. 

2.7m to 2.12m when using four bearings instead of 1 
bearing. 

Figure 8 shows a trend that the median location 
estimation error decreases when the number of 
calibration bearings included is increased. There is 
no obvious optimal bearing or combination of 
bearings less than 4. For the given testbed it is not 
recommended to use less than four bearings. 

 
6. CONCLUSIONS 

This paper presents an adapted version of the 
algorithm using the smallest Euclidean distance for 
fingerprinting within environments where existing 
WLAN infrastructure is used for positioning. The 
basic Euclidean distance algorithm is adapted to an 
environment with changing sets of base stations used 
for calibration and positioning. Moreover, the 
handling of outliers in positioning is included. The 
algorithm works with reasonable accuracy under 
such conditions. However, under specific 
circumstances still individual heavily incorrect 
location estimations occur. Such outliers may be 
filtered using a moving median filter over the 
estimated position coordinates.  

The calibration effort which accounts for the 
major part of installation time can be reduced 
significantly when a small increase of location 
estimation error is accepted by decreasing the 
number of calibration points, resp. by increasing the 
grid size. It is furthermore expedient to use four 
calibration bearings because this results in a higher 
certainty for receiving good estimation results. 

For future work an easy to use method to find 
optimal threshold parameter settings for adjusting 
the algorithm to a specific spatial setting must be 
developed. Thus, the system can be used by non 
professional operators. 
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