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Abstract: In this paper a method for estimation of position and motion of a mobile robot in an indoor environment is 
introduced. The proposed method uses WLAN signal strength to estimate the global position of a mobile robot in an 
office building. Thus signal strengths of the received access points are stored in the radio map in calibration phase. In 
localization phase the stored values are compared with actually measured one’s. Therefore a fingerprinting algorithm, 
that was introduced before, is used. The improvement of the presented work is the multi sensor fusion using Kalman 
filter, which enhances the accuracy of fingerprinting algorithms and tracking of the robot. For this reason odometric 
and gyroscopic sensors of the robot are fused with the estimated position of the fingerprinting algorithm. The paper 
presents the experimental results of measurements made in an office building. 
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1. INTRODUCTION 
Navigation is a key ability of mobile robots. The 

task of navigation can be divided into localization 
and path planning. The aim of localization is to 
estimate the position of a mobile robot in its 
environment, given a map of the environment and 
local sensorial data. Robot localization has been 
recognized as one of the most fundamental problems 
in mobile robotics. 

Aim of localization is to estimate the position of 
a mobile robot with respect to its environment. The 
problem is called global localization if there is no 
priori estimate of the robot position. 

Usually odometric sensors are used to solve the 
localization problem of mobile robots. Odometric 
sensors provide information about robot movements, 
but unfortunately, the provided information is noisy 
and accumulates errors over time in length and 
orientation. Furthermore with odometry its only 
possible to get a local position in relation to an 
initial position. Odometry is accurate enough for 
local movements but is not suitable for long term 
localization because of its increasing error [1]. One 
Method to get those informations is to use a wheel 
encoder. This kind of encoder is a very low priced 
sensor and it is available on nearly every wheeled 
mobile robot. 

Because of the insufficient odometry accuracy in 
the orientation it is helpful to take an other sensor 
and fuse it with the odometry. A good alternative for 
this application is a gyroscope. With a gyroscope it 
is possible to measure the orientation of the mobile 
robot. Gyroscopes are available in a wide price 
range from a few dollars to a several thousand 
dollars. Actual Micro-Electro-Mechanical System 
(MEMS) gyroscopes are cheap and mainly accurate 
enough for the localization of a mobile robot. But, as 
the wheel encoders, its only feasible to get the local 
orientation of the robot.  

Several techniques have been proposed to 
improve the localization accuracy of mobile robots. 
A second point in relation to mobile robots is, that 
they need a sensor to get a global view to their 
environment, such as a laser scanner or GPS. In this 
paper the odometric and gyroscopic sensors of a 
mobile robot are combined with a WLAN 
localization algorithm [2]. Most WLAN adapters are 
able to measure the signal strength of received 
packets as part of their standard operation. The 
signal strengths of received packets vary noticeably 
by changing the position [3]. So it can be used to 
estimate a global position of a mobile robot. To 
improve the accuracy and the robustness of the 
position estimation the robot can be tracked by 
odometric sensors. For more accuracy the position 
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calculated by the WLAN signal strength and the 
odometric position are fused [4]. The sensor fusion 
is calculated by Kalman filter. The recursive filter 
calculates out of a series of noisy measurements the 
position by minimzing the mean of the squared 
error. The developed system improves the position 
estimation of a mobile robot as a cheap technology. 
The costs of mobile robots can be reduced by 
omitting expensive laser or vision sensors. Also the 
low computational overhead is an advantage of 
using Kalman filter for sensor fusion. 

This paper is organized as follows: 
Section II introduces several kinds of localization 

techniques in wireless networks. 
Section III describes the multi sensor data fusion 

using the Kalman filter. Therefore the odometric and 
gyroscope sensors of the mobile robot are combined 
with the WLAN position estimation. In section IV 
the used software architecture is presented. Section 
V shows the experimental setup of the used robot 
and the office floor that is used for localization and 
tracking. The experimental results of the 
measurements are presented in section VI. Section 
VII concludes the paper with the evaluation of the 
levied results and gives a forecast of the future work. 

 
2. RELATED WORK 

Up to now several kinds of localization 
techniques are developed for the use in wireless 
networks. A review of existing techniques is given 
in [5]. These techniques can be classified by the 
information they use: 

• Connectivity information 
• Angle of Arrival (AoA), 
• Time of Arrival (ToA), 
• Round-trip Time of Flight (RToF), 
• Time Difference of Arrival (TDoA), 
• Received Signal Strength (RSS). 
Connectivity information is available in all kinds 

of wireless networks. The accuracy of localization 
depends on the range of the used technology and the 
density of the beacons. In cellular networks Cell-ID 
is a simple localization method based on cell sector 
information [6]. In infrastructure mode of a Wireless 
LAN (WLAN), the access point (AP) to which the 
mobile device is currently connected, can be 
determined since mobile devices know the MAC 
hardware address of the AP, which they are 
connected to. Bluetooth is another technology, 
which allows a relatively accurate localization 
because of its low radio range [7]. Besides the 
deployment of Radio Frequency Identification 
(RFID) in Supply Chain Management [8], the RFID 
technology is also suitable for position estimation. 
RFID tags can be deployed at known positions in the 
environment, in order to obtain position information 

when they are in range. This information can be 
fused with data from other sensors (e.g. odometers) 
for the purpose of improving the accuracy of 
localization [9][10], such as it is proposed for 
WLAN in this paper. The high effort and costs for 
placing RFID tags in a high density makes this 
technique unfavorable for the indoor localization of 
a mobile robot. 

AoA determines the position with the angle of 
arrival from fixed anchor nodes using triangulation. 
In [11] a method is proposed, where a sensor node 
localizes itself by measuring the angle to three or 
more beacon signals. Each signal consists of a 
continuous narrow directional beam, that rotates 
with a constant angular speed. Drawback of AoA 
based methods is the need for a special and 
expensive antenna configuration e.g. antenna arrays 
or rotating beam antennas. 

ToA, RToF and TDoA estimate the range to a 
sender by measuring the signal propagation delay. 
The Cricket localization system [12] developed at 
MIT utilizes a radio signal and a ultrasound signal 
for position estimation based on trilateration. TDoA 
of these two signals are measured in order to 
estimate the distance between two nodes. This 
technique can be used to track the position of a 
mobile robot [13]. ToA, RToF as well as TDoA 
require a complex wireless network infrastructure, 
which is usually not present in today’s WLAN 
installations. Unfortunately this method requires 
additional sensors and is not suitable for the target 
application, which requires cheap technology. Ultra-
Wideband (UWB) offers a high potential for range 
measurement using ToA, because the large 
bandwidth (> 500 MHz) provides a high ranging 
accuracy [14]. In [15] UWB range measurements are 
proposed for tracking a vehicle in a warehouse. The 
Ubisense system, developed at the University of 
Cambridge, is a commercial UWB based 
localization system [16]. Position estimation is 
performed using both TDoA and AoA 
measurements. The anchor nodes are equipped with 
antenna arrays in order to provide AoA 
measurements. The TDoA information is determined 
between pairs of anchor nodes connected with a 
timing cable. The combination of AoA and TDoA 
measurement allows a reliable position estimation 
with an guaranteed accuracy of 15 cm, even if only 
two anchor nodes receive the signal. Owing to the 
complex technology, the aboce metioned location 
system are too expensive. ToA, RToF as wells as 
TDoA require a complex wireless network 
infrastructure, which is usually not present in 
today’s WLAN installations. For that reasons these 
technologies are not applicable for the target 
application. RSS information can be used in most 
wireless technologies, since mobile devices are able 
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to monitor the RSS as part of their standard 
operation. The distance between sender and receiver 
can be obtained with the Log Distance Path Loss 
Model described in [17]. Unfortunately, the 
propagation model is sensitive to disturbances such 
as reflection, diffraction and multipath effects. The 
signal propagation depends on building dimensions, 
obstructions, partitioning materials and surrounding 
moving objects. Own measurements show, that these 
disturbances make the use of a propagation model 
for accurate localization in an indoor environment 
almost impossible [18]. 

A method to overcome this disadvantage is 
fingerprinting, which is introduced in [19] and uses a 
radio map. Fingerprinting is divided in two phases: 
In the initial calibration phase, the radio map is built 
by moving around and storing RSS values at various 
predefined points of the environment. Figure 1 
shows an example for a radiomap and its associated 
distribution of the RSS values in a normal university 
builing.  

 
Fig. 1 – Example for a radio map 

In the localization phase, the mobile device 
moves in the same environment and the position is 
estimated by comparing the current RSS values with 
the radio map. A metric to compare the measured 
RSS values with the radio map is Euclidean distance 
proposed in [19]. Other approaches use a Bayesian 
algorithm [20] or Delaunay triangulation with lines 

of constant signal strength [21]. In [22] a Kalman 
filtering application to an artificial neural network is 
proposed. An online learning method for radio maps, 
based on self organizing maps and probabilistic 
localization algorithm is introduced in [23]. 
Therefore a rough initial signal propagation model is 
used to reduce the amount of work in calibration 
phase. Another approach is presented in [24], where 
the anisotropy of the antenna gain is exploited to 
determine heading and integrity of the position, 
estimated by measured signal strength, of a mobile 
robot. 

 
3. MULTI SENSOR FUSION USING 

KALMAN FILTER 
The Kalman filter was first described by Rudolf-

Emil Kalman in the year 1960. Normaly it is used 
for multi temporal data fusion of a linear discrete-
time controlled process but it can be extendend. So it 
can be used for multi temporal data and multi sensor 
data fusion. In this extension the structure of the 
filter stays the same. The filter is divided into two 
parts, the time update and the measurement update. 
The time update equations are the following [25]: 

 

11ˆˆ −−
− += kkk BuxAx     (1) 

QAAPP T
kk += −

−
1     (2) 

 
The time update equations projecting forward the 

current state −
kx̂  and error covariance estimates 1−kP  

to obtain the a priori estimates for the next time 
step. The measurement update can be described as 
corrector equations: 

 

( ) ,1−−− += RHHPHPK T
k

T
kk   (3) 

( ),ˆˆˆ −− −+= kkkkk xHzKxx   (4) 

( ) ,−−= Kkk PHKIP    (5) 
 

where kK  is the Kalman gain, which is used in (4) 
for weigthing the difference between the a priori 
estimate and the current actually measure kz . Then 
with (4) the a posteriori state estimate is calculated 
with the a priori state estimate and by the Kalman 
gain weighted difference. With (5) the a posteriori 
error covariance is estimated. After each pair of 
update equations the previous a posteriori estimates 
are used to predict the new a priori estimates. The 
recursive nature of the Kalman filter makes it 
attractive for a wide field of applications. For the 
fusion every measurement of the appropriate sensor 
at the time k is combined in an extendended measure 
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system is defined in M equations [26]: 

 
,111 −−− ++= kkkk wBuAxx   (6) 

 
with the process noise 

 
),0(~)( kk QNwp .   (7) 

 
The equation shows that the process noise is 

independent, white and with a normal probability 
distribution. The process noise covariance kQ  is 
important to the behaviour of the Kalman filter. The 
values for kQ  declares how to trust the process. The 
equations 6 and 7 are similar to the Kalman filter 
without fusion. The differences are only located in 
the measurement equations. The measurements of 
the respective sensors )(mS  are described as follows: 

 
,)()()( m
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with the measurement noise 
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k

m
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Also the measurement noise is independent, 

white and with normal probability distribution. As 
the process noise covariance kQ , it is necessary to 
find a matching value for the measurement noise 
covariance )(m

kR . With this matrix it is possible to 

specify how the different sensors )(mS  are trusted. 
The measurement noise covariance )(m

kR  is built 
from the covariances of each sensor: 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
)00

00
00

)(

)1(

M
k

k

k

R

R
R O .  (10) 

 
Furthermore the matrix )(mH  is composed from 

different gain matrices related to the associated 
sensor )(mS : 
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The archtitecture of the measurement fusion is 

centralized, that means that all measurements of 

each sensor are collected together at a central point. 
The Fig. 2 shows the centralized measurement 
fusion for a mobile robot, where zw is the position 
estimated out of the WLAN signal strength and zo 
the position calculated with odometry and gyroscope 
data. Note that xw and xo are the x positions of the 
WLAN localization and the odometry and does not 
deal with the state xk. 

The state of the concrete system xk consits, as 
shown in equation 12, of the position x an the 
velocity in x direction vx. 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

x
k v

x
x    (12) 

 
y and vy are not part of this filter. Because of the 
performance this system is splitted into two filters 
for x and y. But the design for both filter is equal, so 
here is only one direction introduced. The matrix A 
predict the new position across the velocity as 
follows: 

 

 
Fig. 2 – Centralized measurement fusion [26] 
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The values for the process noise covariance Q are 

identified empiricaly. As shown in equation 14 an 
identity matrix was choosen for Q: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
01

Q .   (14) 

 
The matrix is equal in every sampling step so k 

could be omitted for the process noise covariance Q. 
The matrices Hw and Ho are composed to a new gain 
matrix H and is set as follows: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

01
01

H .   (15) 
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The measurement vector zk consits of the x 
position xw computed of the actual WLAN scan and 
the position xo computed of the wheel encoder. zk is 
shown in equation 16: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

o

w
k x

x
z .     (16) 

 
Once again as the process noise covariance Q the 

sampling step k could be omitted for the 
measurement noise covariance R, because there is no 
change in it. R is composed of Rw and Ro and shown 
in equation 17: 
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The variances for the several entries of the 

measurement noise covariance R can be measured 
previously by an offne application. The result of 
these analysis were that the odometry position has a 
much lower variance than the WLAN position. So 
the value for Rw is set to 5 and much higher than the 
value for Ro with 0,2. 

The odometry and gyroscope data are pre filtered 
with an independant Kalman filter on the 
microcontroller of the Pioneer3-AT. 

The signal strength to estimate the position xW 
and yW is pre filtered with an independent Kalman 
filter. The filter matrices are scalar for this kind of 
system. So the values for A, H and the initial for P0 
are set to 1. The initial value for the state x0 is set to 
the first signal strength measurement that is done. As 
seen in figure 3 the unfiltered signal strength is 
incorrect.  

 
Fig. 3 – Filtered signal strength for a stable position 

The curve for the filtered signal shows that it is 
more smoothed, but it is necessary to distinguish 
stable positions and while the robot is in motion. For 

stable positions its better to choose a smaller value 
for the measurement noise covariance Rk and a 
higher for the process noise covariance Qk. The 
picture 3 shows this behaviour in a situation while 
the robot does not drive. 

If the robot is in motion its the other way around, 
a higher value for Rk and a smaller for Qk provides a 
better result. As seen in figure 4 the filtered curve is 
more similar to the measurement than the one in 
figure 3. 

 
Fig. 4 – Filtered signal strength in motion 

 
4. SOFTWARE DESIGN 

The software is divided into three parts: a 
localization engine, a graphical user interface (GUI) 
and a WLAN scanner (Fig. 5). The localization 
engine and the GUI are written in the Matlab script 
language, the WLAN scanner are implemented in C. 
The WLAN scanner uses the WE ioctl()-
Interface for reading RSS values from both WLAN 
adapters. 

 
Fig. 5 – Design of the localization software 

The communication between localization engine 
and WLAN scanner is build with TCP/IP sockets. 
Since the localization engine are built on Matlab, it 
is possible to run it on every computer which offers 
a Matlab environment and a network access. The 
GUI is used for monitoring information to the user 
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and for building the radio map. Fig. 6 shows the 
GUI with a map of a floor in the Computer Science 
building. The red dots show the measured referenced 

points that were learned in the calibartion phase. In 
order to build the radio map, the user moves the 
robot to the predefined poses (red arrows) and stores 
the RSS values. It is optional to change the Server IP 
address, the network interfaces for both antennas 
and the ESSID of the APs. The blue circles define 
the trajectory the robot moves when the examination 
is conducted. The heading of the robot is shown with 
black line on the blue circles. Deviation of the real 
heading of the robot is measured after every 
examination in the final position (see ∆Θ in table 1). 

 
5. EXPERIMENTAL SETUP 

The experiments are carried out with a mobile 
robot Pioneer3-AT manufactured by MobileRobots 
Inc. (Fig. 7). The robot is equipped with an 
embedded computer for real time robot control and 
an additional PC with a WLAN card for 
communication and localization. 

A robot server is included in the operating system 
of the embedded computer. It manages the low-level 
tasks of robot control and operation, including 
motion and odometry. The robot server receives the 
commands from the PC via RS-232 serial link. It is 
the job of a program running on the PC to perform 

robotics tasks such as sensor fusion, localization, 
mapping, and navigation. For programming 
purposes ActivMedia provides the toolkit ARIA 

(ActivMedia Robotics Interface for Application) 

[27]. ARIA is a object oriented, cross-platform 
(Windows /Linux) toolkit for ActivMedia mobile 
robots. It is written entirely in C++, but access to the 
API is also available from the Java programming 
languages via “wrapper” libraries. ARIA provides an 

 
Fig. 6 – Matlab Localization engine and GUI 

Fig. 7 – Pioneer3-AT 
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interface to control the robot’s velocity, heading, 
relative heading, and provide detailed information 
about odometry and operating conditions from the 
mobile robot. 

The operation system on the PC is Debian Linux 
(5.0 Lenny), which offers support for wireless 
communication by the wireless extension (WE). WE 
is an application programming interface (API) 
allowing a user space program to configure a 
WLAN driver and receive statistic information. The 
WE provide an interface via ioctl(), which is 
documented in wireless.h. Good examples for 
programming WE are the wireless tools for Linux. 
The program iwlist scans the WLAN for accessible 
APs and monitors the signal strengths of received 
packets along with hardware MAC addresses of APs 
in range. 

There are two kinds of scanning modes: passive 
scanning and active scanning. In passive scanning 
mode the WLAN card is put into monitoring mode 
and waits for incoming packets. In active scanning 
mode the mobile device sends a probe request 
packet on every frequency and waits for the probe 
response packets of the access points (APs) in range. 
Active scanning is an important feature in WLAN 
positioning, because the time of the measurements 
for all received signal strengths can be determined. 
Active scanning obtains new received signal 
strength values of all APs in range at the time of 
scanning. 

 
6. EXPERIMENTAL RESULTS 

The experiments were carried out in a foyer of an 
unversity building. The mobile robot was driven 
around a square with 3m side length. The measured 
points of the WLAN signal strength were made in an 
equal distance of 2m and stored into the radio map. 
At each time of the measurements, five access points 
of the facultys internal WLAN were reachable. Four 
tests with different sensor fusions were conducted. 
Although by the first two experiments the robot was 
driven one round and by the third and fourth 
experiment two rounds. The table I shows the 
experimental results, where _p is the error of the 
position and __ of the heading of the robot. As 
shown in the table I the fusion of sensor data from 
WLAN, odometry and gyroscope provides the best 
results. The greater deflection in the second round 
can be explained with the accumulated error of the 
odometric sensors. The improvement of using sensor 
fusion would be even better with a larger terrain. In 
conclusion the sensor fusion with the estimated 
WLAN position is an advantage, when the wheel 
encoders deliver position failures of 1 to 2m to the 
real position of the robot. 

Table 1. Error of the estimated positions 

1 Round 
Test 1 Test 2 

 

∆p ∆Θ ∆p ∆Θ 
Odo 0,62m 13 0,35m 6 

Odo/WLAN 0,51m 13 0,26m 6 
Odo/Gyro 0,12m 1 0,24m 8 

Odo/Gyro/WLAN 0,12m 1 0,14m 8 
WLAN 1,42m – 2m – 

1 Round 
Test 1 Test 2 

 

∆p ∆Θ ∆p ∆Θ 
Odo 1m 32 0,85m 20 

Odo/WLAN 0,92m 32 0,8m 20 
Odo/Gyro 0,28m 13 0,34m 6 

Odo/Gyro/WLAN 0,29m 13 0,3m 6 
WLAN 1,13m – 0,7m – 

 
7. CONCLUSION AND FUTURE WORKS 

This paper has presented a method for the fusion 
of multi sensor data of a mobile robot. Therefore a 
Kalman filter is applied to the position estimated by 
a fingerprinting algorithm and the measurements of 
the odometry and gyroscope sensors. In future work 
the Kalman filter for fusing the wheel encoders and 
the gyroscope done by the Pioneer3-AT would be 
replaced by an own implementation to have a better 
access to this point of fusion. Another Kalman filter 
is applied to reduce the noise of the signal strength 
measurements. The results show that the fusion of 
all three sensory data provides the best accuracies of 
the estimated positions and the tracking of the 
mobile robot. The improvement of the sensor data 
fusion using Kalman filter would be even more 
noticeable driving a longer trajectory. For this 
examination a larger terrain is needed, what will be 
done in future work. 

Furthermore in future work it is intended to use 
an online learning algorithm to enhance the radio 
map. Also the adaption on the temporal measured 
signal strengths could be realized. For this purpose a 
method based on the self organizing maps from 
Theuvo Kohonen [28] seems to be the best 
approach. 
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