
Silvano R. Rossi, Alexandre C. Rodrigues da Silva, Tércio A. dos Santos Filho / Computing, 2009, Vol. 8, Issue 3, 6-13 
 

 6 

 
 
 

IEEE 1451.2-BASED SENSOR SYSTEM WITH JAVA-TEDS SOFTWARE 
TOOL 

 
Silvano R. Rossi 1), Alexandre C. Rodrigues da Silva 2), Tércio A. dos Santos Filho 2) 

 
1) Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina, 

srossi@fio.unicen.edu.ar, http://www.fio.unicen.edu.ar/investigacion/intelymec/index.html  
2) Universidade Estadual Paulista, Brazil,  

acrsilva@dee.feis.unesp.br, http://www.dee.feis.unesp.br 
 

Abstract: This work presents the implementation of a microcontroller-based Smart Transducer Interface Module based 
on the IEEE 1451.2 standard and a Java-TEDS software tool development to generate the electronic data for each 
transducer channel implemented in the smart module. The module, with two transducer channels was implemented with 
a PIC16F876A® microcontroller and programmed in C language. A software support resource has been developed in 
order to generate the data for the Transducer Electronic Data Sheet descriptive memory. This software resource is fully 
based on Java language. When generated, the TEDS data blocks can be stored in the program memory module of the 
microcontroller. Methodology and results are presented and discussed. 
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1. INTRODUCTION 
In the last years, several concepts associated with 

computer networks were progressively gaining 
ground in measurement and control systems. 
Nowadays, many technologies closely related to 
Internet, such as WWW, Java, TCP/IP protocols and 
Ethernet, play a significant role in the 
instrumentation arena [1], [2]. 

 Within this context, distributed measurement and 
control systems are composed of a set of sensors and 
actuators interconnected via a control network, for 
monitoring and controlling the physical variables 
involved, for instance, in an industrial process. Thus, 
networked smart transducers facilitate the reliability 
and performance of the system. 

There are many interconnection technologies 
such as sensorbus, devicebus, and fieldbus available 
in different network levels [3], [4]. From the 
beginning of 1980s until now there were many 
normalization efforts; nevertheless, it is still evident 
the lack of a universally accepted standard to 
simplify the implementation of networked smart 
transducers [5]. Probably one of the most important 
efforts in this respect is the advent of the IEEE 1451 
Smart Transducers Interface Standards, toward the 
end of 1990s. The IEEE 1451 specification can be 
applied in order to address the interfacing 
problematic [6], [7]. By using IEEE 1451.1 and 
IEEE 1451.2 standards it is possible to implement a 

network node comprised by a Network Capable 
Application Processor (NCAP) based on an object 
model of a networked smart transducer, and a Smart 
Transducer Interface Module (STIM) containing up 
to 255 transducer channels, each with its own 
channel Transducer Electronic Data Sheet (TEDS) 
stored in a nonvolatile memory. Two objectives are 
possible to attain with this approach: a) transducer-
to-network interoperability, and b) plug and play 
operation mode at the transducer level.  

Pioneer researchers in demonstrative IEEE 
1451.2 applications have used an on-chip acquisition 
system based on 8051 compatible MCU [8]. These 
solutions have also been used in the last years [9-
11]. There are similar options for implementing 
STIMs, for instance, by using a Rabbit 3000® 

microprocessor [12]. An attractive alternative for 
STIM implementation is the utilization of 
microcontrollers, due to its low relative cost and the 
availability of different embedded peripherals. 

There are many microcontroller-based IEEE 
1451 applications. A Complete IEEE 1451.1-1451.2 
node was implemented for a CAN network, with a 
STIM based on a Phillips 87C752® microcontroller 
[13]. A STIM implementation with a mid-range 
microcontroller is also possible [14]. An IEEE 1451-
based smart module for in-vehicle networking 
systems was implemented in [15], using a 
PIC16F877® microcontroller.  
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In accordance with previous approaches related 
to the current work, a minimal STIM based on a 
low-cost MC68HC908QY4® microcontroller is also 
possible, in this case, using a device with a small 
quantity of I/O pins [16]. 

Another interesting option is the utilization of 
Programmable Logic Devices (PLD). Through this 
technology it is possible to perform parallel 
processing; nevertheless, PLDs can become an 
expensive alternative when they are compared with 
microcontroller-based applications. There are IEEE 
1451-related experimental works based on 
programmable logic, using PLDs of different 
manufacturers and developed through hardware 
description languages [17-19], multi-core [20], and 
soft-core technologies [21]. 

In this work, an IEEE 1451-based sensor system 
with a STIM module based on the PIC16F876A® 
microcontroller is presented. This application was 
created because of two reasons: a) to test an 
additional novel software resource fully based on 
Java and developed with the aim of easily generating 
the transducer electronic data, specified by the 
standard, and b) to test the 10-wire TII functionality 
in accordance with IEEE 1451.2 defined in 1997.  

Although the initial intention of the NIST-IEEE 
was to create a universal interface among 
transducers and network nodes, its acceptance in the 
industrial context is still incipient. This fact can be 
attributed to the 10-wire TII, which has been 
considered to be complex by several users and 
sensor manufacturers. Some effort was made to 
search for methods of simplifying and checking the 
mentioned interface to customize it to others, for 
instance, RS232 and USB, which use fewer wires 
[22-24]. This is particularly interesting to support 
the IEEE 1451.0-2007 Standard [25]. Nevertheless, 
the authors of this work believe that is necessary to 
continue working with the TII definition, because it 
was initially created to implement a reliable 
connection-oriented communication protocol. 

Once generated by means of Java-TEDS tool, 
TEDS information can be stored in the program 
memory of the implemented module. Furthermore 
another software tool based on Java2D was 
developed to verify the STIM functionality and the 
protocol communication over the TII interface. To 
achieve this goal, the parallel port of a conventional 
PC was used. 

The rest of the paper is structured as follows; 
section 2 introduces a brief commentary about IEEE 
1451.2 standard; section 3 focuses on the proposed 
system development; section 4 and 5 present the 
STIM implementation and the Java-TEDS tool 
respectively, and section 6 describes the simulation 
and experimental results. The conclusions are 
presented in section 7. 

2. IEEE 1451.2 
A networked smart sensor system can be 

partitioned into two parts using the IEEE 1451.1 and 
IEEE 1451.2 smart transducer interface standards, as 
can be seen in Fig. 1. The first one is the Network 
Capable Application Processor (NCAP) that 
performs the major data processing and control 
actions, establishing the link between the transducer 
application and the network, through an object 
model of a networked smart transducer defined by 
IEEE 1451.1. Moreover, it is necessary to obtain the 
data from the transducers in order to carry out the 
data processing. This second part is defined by IEEE 
1451.2 standard, introducing the concept of Smart 
Transducer Interface Module. 

The STIM performs the data acquisition for each 
transducer channel and the control of the Transducer 
Independent Interface (TII) in order to communicate 
with the NCAP. Besides, according to the IEEE 
1451.2 standard, the STIM must be capable of 
containing some essential characteristics such as 
auto-identification of the transducer channels, and 
hot-swap capability. The auto-identification is 
achieved through the Transducer Electronic Data 
Sheet (TEDS) blocks. 

TEDS formats are stored in a non volatile 
memory that are part of the STIM to achieve 
network auto-identification and plug and play 
operation mode of the transducer application.  

The STIM can contain up to 255 different 
transducer channels on account of the 8 bits data 
processing. Analogue signals from the transducers 
are converted to digital format by means of an 
analog-to-digital converter. The ADC and signal 
conditioning circuits are also part of the STIM. The 
communication over the TII is based on the 
standardized protocol defined by IEEE 1451.2. 

The TII is composed of ten lines with the 
following functions: a) address and data transport, 
data transport framing signals and acknowledge, and 
clock (DIN, DOUT, NIOE, NACK, DCLK), b) 
triggering (NTRIG), c) request service by the STIM 
from the NCAP (NINT), and e) power supply and 
support (POWER, COMMON and NSDET). 

 
Fig. 1 – STIM-NCAP connection 
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3. DEVELOPMENT 
Before the STIM hardware implementation based 

on a microcontroller it is useful to gather the 
following information for storing the TEDS: a) 
number of transducer channels to be implemented, 
b) transducer channel type, c) physical properties to 
be measured, and d) other relevant information, e.g., 
the acquisition time.  

Thus, the data is coded in electronic format in 
different TEDS blocks for each channel considered 
into the STIM, and one Meta-TEDS structure 
considering the STIM as a whole. Channel-TEDS 
and META-TEDS are the two mandatory TEDS 
formats according to IEEE 1451.2.  

The STIM hardware requires basically a 
synchronous serial port, an ADC, and a non-volatile 
storage [26]. 

In this work a microcontroller-based STIM with 
two transducer channels was used. One of them 
contains a general-purpose integrated temperature 
sensor model LM35, and the other channel contains 
a circuit that sets in motion a cooler. 

 
4. STIM IMPLEMENTATION 

The utilization of a microcontroller to implement 
the STIM is an attractive alternative due to its 
relative low cost and the availability of embedded 
peripherals as ADCs and high performance 
memories. A PIC16F876A® microcontroller from 
Microchip, with 28 pines, Harvard architecture and a 
Reduced Instruction Set Computer [27], was chosen 
for the STIM implementation. 

This device has 368-B of RAM memory, 256-B 
of EEPROM and 8-kB of program memory. Besides, 
it is possible to work with clock frequencies of 
20MHz. Thus, it is a suitable option for 
implementing the functionality of the STIM, to 
easily designate the pines for the I/O TII 
assignments, and to store the TEDS information.  

In agreement with the standard, the mandatory 
TEDS formats require 96-B for each channel-TEDS 
block and 80-B for the Meta-TEDS. Fig. 2 shows the 
TII lines mapped into the chosen microcontroller. 

On the other hand, the microcontroller is 
composed of an embedded 10-bits ADC, which is 
very useful for the current application, since it 
eliminates the requirement of an external circuit for 
such a purpose. In addition, the module is capable to 
interrupt the CPU, enabling the STIM software 
optimization, because polling algorithms to control 
the module are unnecessary.  

The STIM software is based on the approach 
presented in [8] and was conceptually designed 
according to the diagram depicted in Fig. 3 that 
shows the software blocks to implement the module. 

 
Fig. 2 – STIM hardware 

 
Fig. 3 – Conceptual view of the STIM software 

A central routine was included to manage the 
program flow, the memory for storing the TEDS 
formats, the interface with the transducers, the 
control of the TII, and the address and function 
blocks. In order to introduce more flexibility in the 
code, C language was chosen for programming the 
microcontroller.  

In terms of STIM functionality, the software can 
be considered to be divided in modules, each of 
which can be thought as a state machine. Fig. 4a 
shows a diagram to illustrate the above-mentioned 
concept. Microcontroller’s ports and interrupts are 
configured during the initialization stage. The NCAP 
establishes the handshake with the STIM, thus, the 
NIOE line is asserted, the variables associated with 
the STIM and the rest of its state machines are 
initialized, A/D module configuration is completed, 
and NACK line is asserted. Subsequently it is waited 
until the NCAP negates NIOE line. In this situation 
the STIM negates NACK in order to complete the 
handshake process. Afterward, the STIM is ready to 
start the communication, performing an infinite loop 
as shown in Fig. 4b.  

Fig. 5 depicts a simplified diagram of the trigger 
state machine, which serves as controller of other 
machines. The initial state for the trigger machine is 
inactive, waiting for a trigger event performed by the 
NCAP or the end of a data transfer between NCAP 
and STIM.  

The trigger process begins when the NCAP 
asserts the NTRIG line at low logic level. In this 
manner, the STIM starts the data acquisition and the 
machine assumes the triggered state. While the state 
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machine is in this situation, A/D conversion is 
performed at the same time or the output that drives 
the cooler is updated. If the NCAP negates NTRIG 
before finishing the analog to digital conversion, the 
STIM passes to the quiescent state. Afterwards this 
conversion NACK is enabled and the machine goes 
on to the trigger acknowledged state. Here it is 
waited that the NCAP negates the NTRIG signal to 
go on to the quiescent state, in order to carry out the 
data transport. 

The acquisition machine performs the A/D 
conversion for all the different channels. The 
hardware of the microcontroller indicates the end of 
acquisition through interruptions. 

The acquisition machine obtains the data 
necessary to update actuator outputs and dispatch 
data for using in other parts of the program, by 
means of a data buffer. Afterwards the sensor data 
reading process, buffer must be updated. 

The function state machine interacts with the data 
transport machine, indicating whether corresponds a 
data input or output, how many data must be 
processed, and wherefrom to obtain them or where 
to send them. Initially the function machine 
indicates to the transport machine that should 
receive the bytes and should store them in a variable 
that contains the functional address normalized by 
IEEE 1451.2. Subsequently checks that this one is a 
valid address, then to continue with the 
corresponding reading or writing process.  

 

 
Fig. 4 – STIM functionality 

 
Fig. 5 – Trigger state machine 

In the case of the actuator channel a resolution of 
one byte is used, since this is equivalent to the 
switched off or switched on state of the cooler 
attached to the mentioned channel. If the requested 
operation is a TEDS’s reading, the information of 
the length of every TEDS data block is available, 
facilitating the data transport through the TII.  

The data transport machine receives or sends 
each of the bytes in a serial synchronous fashion, 
carrying out the data reception in the positive-going 
edge of the clock and the sending in the negative-
going edge. Finally, the data transport machine 
delimits each of the 8-bit frames, inverting the 
NACK signal for every transferred byte. If the 
NCAP tries to triggers the STIM or aborts the data 
transfer by negating NIOE line during the 
transmission, any data transfer is cancelled and then, 
a hardware error flag is established in the standard 
status register of the STIM. 

Fig. 6 shows the STIM prototype implemented in 
laboratory. 

 

 

Fig. 6 – STIM prototype 
 

5. Java-TEDS TOOL 
Java-TEDS is a software tool developed to easily 

implement the TEDS data blocks in microcontroller-
based STIMs that use C programming. By using a 
friendly graphic interface introduced by the above-
mentioned resource it is possible to create and 
modify the TEDS blocks for its subsequent 
utilization in the STIM. 

This resource is broken down in three parts: a) 
TedIO, b) TEDS, and c) GraphicInterface.  

TedIO package contains all the data types defined 
by the standard such as: U8, U16, U32, LANG, 
STRING, UUID (Universal Unique Identifier), and 
UNITS, among others. These classes implement an 
interface named ToByte that allows converting the 
values into binary format. There is also an interface 
U8E that represents enumeration and constant types, 
defined by the standard too. TedIO package also 
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performs binary data input and output, using 
TedOutputStream and TedInputStream classes. 
These classes extend from OutputStream and 
InputStream from java.io, that belongs to JSDK 
(Java Standard Development Kit) and they are used 
in all the input and output data. On the other hand, 
FormatCOutputStream class was created for writing 
the content of the TEDS in the format used by C to 
define the byte matrix, this is, writing all the bytes of 
the structure between {} and separated between 
commas. The classes TedChecksum and 
GarbageCollector also were created. The first one is 
used by a specialized OutputStream to perform the 
TEDS checksum. The second one is an 
OutputStream in which everything that enter is 
discarded, because to write in a file for calculating 
the checksum is unnecessary.  

For the sake of simplicity only a few part of the 
Java code is depicted in Fig. 7, due to the extensive 
size of the classes diagram. The figure shows a part 
of the code related to TedDataInputStream, which 
extends of DataInputStream. 

TEDS formats are saved and managed by the 
second package, named TEDS, using the data 
formats implemented in TedIO, as well as the classes 
for data input and output, and for the checksum. The 
structure is composed of a class named GroupTEDS 
that contains: a) a metaTeds class representing Meta-
TEDS, and b) a channelTeds class representing the 
Channel-TEDS data block, both defined by the IEEE 
1451.2 standard.  

 
Fig. 7 – Java code example. TedDataInputStream class 

It is important to notice that an object 
GroupTEDS can contain only one object metaTeds 
and more than one object channelTeds. Each of the 
classes metaTeds and channelTeds are composed of 
classes that represent the sub-blocks of the Meta-
TEDS and Channel-TEDS data blocks, respectively. 
At the same time these ones are composed of classes 
that represent the primitive data types defined by 
IEEE 1451.2.  

The GraphicInterface package is based on 
java.swing, and constitutes the graphic interface of 
the TEDS package, allowing users to browse each 
data block in a simple way, to make modifications, 
and even to save and open these TEDS in different 
formats. This resource is comprised by a class 
gWindow, containing the main sub-window and the 
most important menus to work with the TEDS. At 
the same time, this one contains a class GroupTeds 
and a class that represents the visualization of the 
metaTeds and channelTeds. 

A software tool that tries to simulate the basic 
actions of a NCAP has been created for testing the 
STIM, allowing users to verify the TII functionality 
and communication protocols, by means of the 
utilization of the parallel port of a conventional PC. 
Java2D was used for developing the test tool, which 
allowed for the creation of timing diagrams to show 
the behaviour of signals over the TII.  

Parport package was used for the managing of 
the parallel port. Parport is a Java class for reading 
and writing bytes to and from the parallel port and 
can be installed on Windows and Linux platforms, 
enabling the communication with the parallel port 
using Java [28]. 

Java’s multithreading processing capability was 
exploited, using a thread for managing the parallel 
port and a thread for the graphic interface. 

 
6. RESULTS 

STIM functionality was verified through the test 
program created with such a purpose. With this 
resource it is possible to control a circuit connected 
to the PC’s parallel port, where the TII physical 
interface is connected to the STIM. The results are 
given in qualitative way, using the above-mentioned 
software tool.  

The first case, depicted in Fig. 8, corresponds to 
the handshake between STIM and NCAP, via TII 
interface obtained by using the software tool. The 
initial state for all triggering, read and write frame 
protocols is with the NTRIG, NACK, and NIOE 
lines negated, therefore after STIM detection the 
NTRIG, NACK and NIOE lines are at high logic 
level. The NCAP puts the NIOE line at low logic 
level and the STIM replies starting the initialization 
process, and then negating NIOE line. In such 
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moment the NINT line is enabled too, since a STIM 
operational bit is set, remembering the fact that the 
bits of the standard interrupt mask are all one when 
the STIM is initialized. The second case in Fig. 8 
corresponds to a trigger event after finishing the 
handshake. The NCAP asserts the NTRIG line, and 
the STIM asserts NACK, after finishing the A/D 
conversion. Afterwards, the NCAP negates the 
NTRIG and the STIM negates the NACK, according 
to the triggering protocol, defined in IEEE 1451.2. 
From that moment on, when the NCAP asserts 
NIOE line, the serial data is transferred via DIN or 
DOUT and controlled by the DCLK line. 

Fig. 9 shows a data reading related to transducer 
channel #1 that contains an environmental 
temperature sensor. As can be seen, the code 12810 
(100000002) that corresponds to read transducer data 
functional address is sent from NCAP to STIM, 
addressed to the channel 1 (000000012). The code 
representing the environmental temperature is 
obtained via DOUT line and NACK signal delimits 
every byte transferred. After finishing the data 
transmission, the NCAP negates NIOE line and the 
NACK goes on to zero logic level. 

Fig. 10 shows a data reading associated with the 
global standard status register. The code 13010 
(100000102) that corresponds to read global standard 
status functional address is sent from NCAP to 
STIM, addressed to the channel zero.  

The value of the standard status register obtained 
through DOUT line is 010316, signalling: a) The 
STIM is operative, b) the trigger was acknowledged 
by the STIM, and c) there is a global service request.  

The implementation under test is presented in Fig 
11, showing the STIM connected to an interface 
circuitry with the PC’s parallel, via TII, that allows 
using the Java-TEDS software. 

 

Fig. 8 – Handshake process and trigger event 
 

Fig. 9 – Reading data of transducer channel #1 
 

Fig. 10 – Reading data of standard status register 
 

 
Fig. 11 – Implementation under test 

 
Java-TEDS is a software tool that allows the 

creation and modification of the TEDS fields 
necessary for an IEEE 1451.2-based 
implementation. Fig. 12 shows the graphic interface 
presented by the program. The above-mentioned 
sub-window is broken down into several tabs, one 
for Meta-TEDS data block and one more for every 
implemented Channel-TEDS data block. 

 

 
Fig. 12 – Java-TEDS tool 

 

7. CONCLUSION 
An IEEE 1451.2-based sensor system with Java-

TEDS software tool has been presented. The STIM 
was implemented with a low-cost microcontroller 
and programmed in C language. The system 
implementation needed the managing of different 
technologies and was broken down into three stages: 
a) creation of the Java-TEDS resource in order to 
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easily work with TEDS formats, b) developing of 
the microcontroller-based STIM, and c) creation of a 
test tool simulating an NCAP for checking the 
system functionality over the TII. 

By means of the created resources, the 
employment of a general-purpose microcontroller 
appears as an attractive option for STIM’s 
implementation, facilitating the use of the TII 
interface defined by IEEE 1451.2 – 1997. 
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