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Summary: some typical problems in the numerical analysis of certain types of boundary value problems of the 
potential theory in substantially spatial formulation are considered. On the basis of the integral equation method (IE) 
an approximate scheme of solving one model example is built and investigated. It is also considered that the doubly 
connected open surface where boundary conditions are set obtains the Abelian group of symmetry of the eighth order. 
This article shows how using the apparatus of the group theory it is possible to solve an initial problem by the help of 
the sequence of the eight independent IEs, where the integration is realized only on one of the congruent constituents of 
the surface. It creates the conditions for two parallel processes of problem solution in general. The collocation method 
for obtaining approximate values of needed “density of charge distribution” in the particular two-dimensional integral 
equations is used. To take into account the singular way of solving the problem in the circuit of the open surface the a 
posteriori method of error evaluation is created and the procedure of integrating clarification of solving the task in the 
mesh node is implemented. To prove the reliability and estimation of the technique efficiency the number of numerical 
experiments is carried out including the use of so called “plane” approximation of the examined spatial problem. 

 
Keywords: the potential theory, integral equations, the collocation method, the Abelian group of symmetry, matrix of 
Fourier transformation, the a posteriori error evaluation, integrating clarification of solving. 
 
 

INTRODUCTION 
In the process of solving boundary value 

problems of the potential theory in electron optics 
the problem occurs when measuring the electrostatic 
field which is formed by the combination of a great 
number of the charged electrodes of complicated 
configuration. Thus, traditional application of IE 
method becomes substantially complicated as it is 
related to unknown quantities estimation mainly on 
the boundary surfaces. Therefore, the application of 
the group theory apparatus turns out to be more 
effective for the types of boundary tasks which 
obtain the Abelian group of symmetry of the finite 
order. However, taking into account this peculiarity 
in solving particular problems requires an individual 
approach. Although there are considerable 
advantages which allow to find approximate 
solutions with high accuracy. 

 
1. PROBLEM STATING 

Without loss of generality, we will consider the 

task of calculation of the electrostatic field of 
parallel condenser which is shown on the Pic. 1. 
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Pic. 1 – Position of parallel condenser disks 

 
It is easy to see that in the mathematical 

modeling the information on the geometry of the 
charged electrodes is shown as some aggregate S  of 
two parallel rectangular disks. These will be 
considered as infinitely thin disks, with two-sides 
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and limited piecewise smooth circuits of the finite 
length. From the mathematical point of view it is 
necessary to find a function ),()( ∆Ω∈ −

sHPu 1 , 
which satisfies the following conditions 
  0=∆u    в   Ss \: 3R=Ω− ; (1) 

  ±
± = guδ    on   S ; (2) 

  0=
∞→

)(lim Pu
P

,   −Ω∈ sP , (3) 

where )()(: / SHH s
211 →Ωδ −±  – the operators of 

track [1], )(/ SHg 21∈±  – set functions, where 

±g  – known value of the searching function on S  
from a positive and negative side accordingly, and 

{ })(,)(:),( 2
11 −−− Ω∈∆Ω∈=∆Ω sss LuHuuH . 

During the electrostatic interpretation (1)-(3) 
( ) ( ) ( ) ( )SPPfPgPg ∈== −+  – the boundary 

potential value, which on each of two electrodes 
takes a permanent value. It is necessary to notice 
that these values in general do not possess symmetry 
or anti symmetry. 

It is known [2] that the problem (1)-(3) is 
equivalent to such IE as 
  )(d)(),( PfSMMPK

S
M =ρ∫∫ ,   SP∈ ,(4) 

where ),(dist/:),( MPMPK 1=  – a fundamental 
solution to Laplace’s equation in 3R , and ( )Mρ  is 
the needed “density of charge distribution” on S . 

 
2. ACCOUNTING PRESENT SYMMETRY 

The surface S  can be viewed as an aggregate of 
eight congruent constituents iS  ( )81,=i  (see 
Pic. 1). We will give (4) in accordance with a such 
partitioning of S  as an IE system 
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Here ( ) ( ){ }8,1,,,, =∆∈ iyxyx iiρ  is a 
generalized “density of charge distribution” on S ; 

],[],[: ba 0051 ×=∆=∆ , 
],0[]0,[:62 ba ×−=∆=∆ , 
]0,[],0[:73 ba −×=∆=∆ , 
]0,[]0,[:84 ba −×−=∆=∆ ; 
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=:,;, ; 

h2  – the distance between disks. 
Further, we will take into account that the surface 

S  obtains the Abelian group of symmetry of the 
eighth order { }8

1=τ ii , which, in its turn, is a direct 
product of Abelian sub-groups { }xe τ, , { }ye τ, , 

{ }ze τ, , where e  – identical transformation, and 

xτ , yτ , zτ  – mirror reflection from three pairwise 

orthogonal planes { }yz , { }xz , { }xy , accordingly. 
So that the elements of the group are the following 
linear transformations: e=τ :1 , xτ=τ :2 , yτ=τ :3 , 

yx ττ=τ o:4 , zτ=τ :5 , zx ττ=τ o:6 , zy ττ=τ o:7 , 

zyx τττ=τ oo:8 . As unknown functions ( )yxi ,ρ  
depend only on two independent arguments, it is 
obvious that 
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For further system transformation (5) in 
accordance with the general ideas from works [3, 4], 
it is reasonable to use such denotations: 
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Then, in the IE system (5) we will go to the new 
basis: 
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On the basis of the implemented “change of 
variable”, which is also used in the kernels of IE, the 
system (5) can be shown as 
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Thus, on this stage we have received the system of 
eight IEs where integration is performed only on one 
component surface – 1S . 

In its turn, as sub-groups { }xe τ, , { }ye τ, , 

{ }ze τ,  are cyclic groups, thus, the table of their 
characters looks the same [5]: 

 
 e  τ   

1χ  1    1  
2χ  1 1−  , 

 
where zyx ττττ ∨∨=: . Thus, we can calculate the 

group characters of the eighth order { }8
1=τ ii , taking 

direct product of matrices of characters (Fourier’s 
matrices) of sub-groups { }xe τ, , { }ye τ, , { }ze τ, . 
As a result we will have 
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After using forward and backward transformation of 
Fourier, the matrix A′  can be reduced to the 
diagonal representation [4], and the system (6) can 
be “split” on eight independent IEs 
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where 
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elements of the diagonal matrix 1−⋅′⋅ FAF , which 
are calculated after the formulas: 
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hgfedcbaA ++−−−−+=7 , 
hgfedcbaA +−+−−+−=8 . 

After solving approximately eight independent 
IEs (7) by the collocation method, and then the 
system (8), we will obtain the value of the 
functions ( )yxi ,ρ′ 81,=i , by the help of which it is 
possible to calculate the potential in any point of the 
space ( )zyx ,,  using the following formula: 
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The use of the approach offered above allows to 
test an initial task for the arbitrary boundary values 
of the potential. In the Pic. 2 – 3 the distributing of 
lines of even potential is presented in the plane 

0=x  at different relations of the length (a) and 
width (b) of the plate, with the use of piecewise 
permanent approximation of IE density with the 
proper boundary values of the potential: 11 =f ; 

1002 −=f . A number of collocation points at the 
separation of constituent 1S  equals 100. 
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Pic. 2 – Distributing of level lines in the plane 

0=x  at 1=ba  

 
According to [6], for showing of the qualitative 

picture of the field in the plane, which forms as a 
result of central cross-section of the investigated 
system of the charged electrodes it is appropriate to 
use some “plane” approximation when solving a 
spatial problem. The Pic. 4 shows the distribution of 
lines of even potential when solving the proper 

“plane” task, and the Table 1 shows the value of the 
potential in some checkpoints when solving a spatial 
problem and proper “plane” approximation. 
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Pic. 3 – Distributing of level lines in the plane 

0=x  at 16=ba  
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Pic. 4 – Distributing of level lines of “plane” task 

 
Table 1. Potential of the electrostatic field 

in the points of plane 0=x  

( )zy,  u  ( 16=ba ) “plane” 
approximation

(-1.00, -0.75) -79.3731 -79.3729 
(-1.00, -0.25) -66.4593 -66.4594 
(-1.00, 0.00) -46.3909 -46.3910 
(-1.00, 0.25) -27.0001 -27.0004 
(-1.00, 0.75) -10.4086 -10.4082 
(-0.75, -0.50) -99.9925 -99.9930 
(1.00, 0.75) -10.4086 -10.4082 

(2.00, -1.00) -48.9304 -48.9307 
 
It is necessary to notice that solving a spatial 

problem with the arbitrary boundary values of 
potentials on electrodes we should calculate a 
special additive constant C which appears in the 
integral presentation of the field [6]. In our case 

5.49−=C . 
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3. A POSTERIORI METHOD 
OF ERROR EVALUATION 

Without diminishing general attitude, we will 
consider one of the eight independent IEs (7): 
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An approximate solution to this equation is found 

by the collocation method with the use of piecewise 
permanent basic functions. Element division is 
conducted according to [ ] [ ]ba ,, 001 ×=∆ . By 
“Extremal” is considered an element 
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,,: −×−= , which corres-

ponds the angular point of constituent 

1S  (see. Pic. 5). Here 
x

x N
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x
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yx NN ,  – the number of points of segment division 

[ ]a,0 , [ ]b,0 , accordingly. It is necessary to notice 
that without accounting the present symmetry in 
geometry of the open surfaces we should have taken 
into account the peculiarities of solving in the circuit 
of eight angular points of surface S , which 
substantially complicates all algorithm of 
calculations. 

It is known [7] that the “density of charge 
distribution” ( )yx,1ρ  in the circuit of the “angular 
point” ( )baQ ,:=  and reaching the circuit has a 
feature which is expressed by the formula 
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where 70341,≈γ . To remove this peculiarity it is 
necessary to introduce a special change of variables 
in the proper double integrals. However, it 
considerably complicates the algorithm of 
approximate solving of the integral equation and 
does not enable to use a simple and effective 
numeral and analytical scheme [8]. Therefore, we 
will take into account this peculiarity by net 
condensing in the circuit of the point Q  to achieve 
the accuracy of calculations and we will use general 
ideas mentioned in the works [9, 10]. 

Let us suppose that in the result of solving the 
systems of linear algebraic equations, which 
approximates the proper operator equation, we get 
an approximate solution ( )Pερ1 , the analysis of 
which in any case requires the investigation of 

properties of its error ερ ρ−ρ=ε 111
: . 

Let us put some limits and create approximation 

1ρ
e  to the real error 

1ρ
ε . The verification of 

satisfying boundary condition consists in calculating 
the potential in some checkpoint 1P , which lies in 
the circuit of the angular point of the constituent 1S  
and corresponds to the “extremal” element 

yx NND . 

Then we will give the error function 
1ρ

e  as 

( )yxBe P ,
11 1 ⋅= λρ  and we will find an unknown 

parameter 1λ  by collocation (9) exactly in the point 
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It should be noticed that such simple formula for 
parameter 1λ  calculating is connected with 
finiteness of the bilinear bubble-function ( ):,
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Pic. 5 – Schematic presentation of the 
“extremal” element 

 
Calculating the denominator in the formula (10) 

it is convenient to take an element 4
1

yx NND  to the 

local coordinate system ( )βα,  so that 1≤α , 

1≤β . It enables the presentation of ( )( )11
PBK P  as 

a sum of four integrals 1I , 2I , 3I , 4I : 
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Thus, the proper constituents of the bubble-function 
in the local coordinates are as following 

( ) ( )( )βαβα ++= 11
4
1,1B , 

( ) ( )( )βαβα +−= 11
4
1,2B , 

( ) ( )( )βαβα −−= 11
4
1,3B , 

( ) ( )( )βαβα −+= 11
4
1,4B . 

We use the above mentioned values for a 
posteriori error evaluation on the “extremal” element 
to find the approximate solution (9) with the 
beforehand accuracy. As a criterion of stopping the 
clarification process of the approximate solution 

( )Pερ1  there is some indicator 
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If the indicator (11) does not exceed set possible 
level, then we stop the clarification ερ1 , otherwise 
we carry out the net condensing. In our case, on the 
first step of net condensing we will get four new 

elements ( )4,1,4
1

=⎟
⎠
⎞⎜

⎝
⎛ iD

iyNxN
. 

The Table 2 shows the value of the potential in 
some checkpoints which are situated in the circuit of 
the “extremal” element before (u0) and after (u1) 
using a posteriori error appraiser at a possible level 
of 10 %. 

 

Table 2. Potential at some checkpoints in the case of 
piecewise-bilinear bubble function 

y 0,9375 0,8750 0,8125 Ny z 0,9375 0,9375 0,9375 
u0 0,8963 0,9454 0,9697 
u1 1,0358 1,0189 1,0105 
л1 0,1395 0,0735 0,0408 4 

з 0,2116 0,1132 0,0631 
u0 0,9321 0,9792 – 
u1 1,0234 1,0072 – 
л1 0,0913 0,0280 – 5 

з 0,1365 0,0421 – 
u0 0,9600 – – 
u1 1,0138 – – 
л1 0,0538 – – 6 

з 0,0794 – – 
 

4. ITERATION REFINEMENT 
OF SOLUTIONS 

Using the method of a posteriori evaluation of 
error partly offered above, we will consider the 
iteration process of clarification of the approximate 
solutions to the problem (9). On the basis of 
preliminary received densities using the collocation 
method ( )yxj ,ρ  8,1=j  з (7) in the points 

( )pi yx , , where 

( )
2

12 x
i

h
ix ⋅−= , xNi ,1= , 

( )
2

12 y
p

h
py ⋅−= , yNp ,1= , 

we find the value ( )yxj ,ρ  in the mesh nodes 

( )lk yx ~,~ , where ( ) xk hkx ⋅−= 1~ , 1,1 += xNk , 

( ) yl hly ⋅−= 1~ , 1,1 += yNl , as follows: 
1) in the extreme points of the net, for example, in 
the point ( )11

~,~
+yNyx , ( ) ( )

yy NjNj yxyx ,:~,~
111 ρρ =+ ; 

2) for the points ( )1
~,~

+yNk yx , xNk ,1= , 

( ) ( ) ( )[ ]
yyy NijNijNkj yxyxyx ,,

2
1:~,~

11 ++ += ρρρ , 

where 1,1 −= xNi ; 

3) in the points ( )lk yx ~,~ , xNk ,2= , yNl ,2= , 
we perform  

( ) ( ) ( )[ ++= + pijpijlkj yxyxyx ,,
4
1:~,~

1ρρρ  

( ) ( )111 +++ ρ+ρ+ pijpij yxyx ,, , 

where 1,1 −= xNi , 1,1 −= yNp . 
Then, we calculate the potential in the mesh 
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nodes ( )lk yx ~,~ . On the basis of the bubble-function, 

by analogy with (10), we receive jλ
~

. On the basis of 
the discovered values of density in the mesh nodes 
we re-count ( )yxj ,ρ  in the points ( )pi yx ,  after 
the rules described above 1)-3). Then the procedure 
of iteration clarification can repeat. The criterion of 
stopping of such calculations can be, for example, 
fixing of a number of iterations or under the 

condition of ( ) epsyxe
Lj
≤ρ

2

, . 

The Table 3 shows the potential value in some 
checkpoints before and after the use of iteration 
refinement of solutions. 

 
Table 3. Potential u at some checkpoints after the use 

of iteration refinement of solution (eps = 0,01) 

Iteration y z 1 2 3 4 
0,95 0,95 0,9029 0,8150 0,9357 0,9851
0,80 0,95 0,9650 0,8851 1,0318 – 
0,60 0,95 0,9545 0,8892 1,0689 – 
0,40 0,95 0,9569 0,8868 1,0786 – 
0,20 0,95 0,9579 0,8876 1,0851 – 
0,80 0,80 1,0338 – – – 
0,60 0,60 1,0000 – – – 
 

5. CONCLUSIONS 
Taking an example of the numerical solving one 

spatial problem the problems at calculating of the 
electrostatic field are investigated. Approximate 
solutions are received on the basis of the IE method 
taking into account the present symmetry in 
geometry of separate elements of the surface. It 
allowed to carry on solving the eight independent 
IEs, where integration is conducted for 81  of the 
whole surface. It, in its turn, enables to decrease 
random-access memory of the computer when 
forming the system of linear algebraic equations, 
which approximates the proper integral equation in 
64 times and to avoid numerical instability which 
can arise at slight increase of the solved systems. 
This approach also enables instead of eight special 
points of the surface where it is necessary to take 
into account the singular way of the solution to 
control only one. In the circuit of this “extremal” 
element a feature is taken into account on the basis 
of the created a posteriori method of error 
evaluation. For clarification of the solutions in the 
mesh nodes the iteration process is introduced. All 
the advantages of this method were confirmed by 
numerical experiments. 
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