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 Abstract: We presented a general approach for obtai-
ning the generalized transport equations with fractional 
derivatives by using the Liouville equation with fractional 
derivatives for a system of classical particles and the Zu-
barev nonequilibrium statistical operator (NSO) method 
within Renyi statistics. Generalized Cattaneo-type diffu-
sion equations with taking into account fractality of spa-
ce-time are obtained. 
 Keywords: fractional derivative, diffusion equation. 

I. INTRODUCTION 
 The fractional derivatives and integrals [1]–[4] are widely 
used to study anomalous diffusion in porous media, in disor-
dered systems, in plasma physics, in turbulent, kinetic, and 
reaction-diffusion processes, etc. [5], [6]. In Ref. [5], [6], we 
discussed various approaches to obtaining the transport equ-
ations with fractional derivatives. It is important to note that, 
for the first time, in Refs. [7]–[10], Nigmatullin received dif-
fusion equation with the fractional time derivatives for the 
mean spin density [7], the mean polarization [8], and the 
charge carrier concentration [9]. In Ref. [10], justification of 
equations with fractional derivatives is given, and the time ir-
reversible Liouville equation with the fractional time derivati-
ve is provided. In our recent work [5], by using NSO method 
[11], [12] and the maximum entropy principle for the Renyi 
entropy, we obtained the generalized (non-Markovian) diffu-
sion equation with fractional derivatives. The use of the Liou-
ville equation with fractional derivatives proposed by Tarasov 
in Refs. [13], [14] is an important and fundamental step for 
obtaining this equation. By using NSO method and the maxi-
mum entropy principle for the Renyi entropy, we found a so-
lution of the Liouville equation with fractional derivatives at 
a selected set of observed variables. We chose nonequilibri-
um average values of particle density as a parameter of re-
duced description, and then we received the generalized (non-
Markovian) diffusion equation with fractional derivatives. In 
the next section by using Ref. [5], new non-Markovian diffu-
sion equations for particles in a spatially heterogeneous envi-
ronment with fractal structure are obtained. Different models 
of frequency-dependent memory functions are considered, 
and the diffusion equations with fractality of space-time are 
obtained. 

II. LIOUVILLE EQUATION WITH FRACTIONAL 
DERIVATIVES FOR SYSTEM OF CLASSICAL PARTICLES 
 We use the Liouville equation with fractional derivatives 
obtained by Tarasov in Refs. [14] for a nonequilibrium partic-
le function );( txNρ  of a classical system 
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where N
N xxx ,,= 1  , },{= jjj prx   are dimensionless gene-

ralized coordinates, ),,(= 1 jmjj rrr 

 , and generalized mo-
mentum, ),,(= 1 jmjj ppp 

 , [14] of j th particle in the pha-
se space with a fractional differential volume element [13], 
[15] NxdxdVd ααα

1= . Here, )(= 000 tpMrm , M  is the 
mass of particle, 0r  is a characteristic scale in the configura-
tion space, 0p  is a characteristic momentum, and 0t  is a cha-

racteristic time, αd is a fractional differential [15],  
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 is the Caputo fractional derivative, [1], [2], [16], [17] 
nn <<1 α− , nnn dzzfdzf )(=)()(  with the properties 
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α , )( lj ≠ . jv  are the fields of veloci-

ty, jF


 is the force field acting on j th particle. If jF


 does not 
depend on jp , jv  does not depend on jr , and the Helmholtz 
conditions, we get  the Liouville equation in the form 
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where αiL  is the Liouville operator with the fractional deri-
vatives,  

[ ] ).;(),(),(=);(
1=

txDprHDDprHDtxiL N
prrp

N

j

N
jjjj
ρρ αααα

α




−∑ (4) 

where ),( prH   is a Hamiltonian of a system with fractional 
derivatives [13]. A solution of the Liouville equation (3) will 
be found with Zubarev`s NSO method [11]. After choosing 
parameters of the reduced description, taking into account 
projections we present the nonequilibrium particle function 
( )txN ;ρ  (as a solution of the Liouville equation) in the gene-

ral form  
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where 



 ′′−−′ ∫′+ tdiLtPttT rel

t

t α))((1exp=),(  is the evolution 

operator in time containing the projection, exp+  is ordered 
exponential, 0+→ε  after taking the thermodynamic limit, 

)(tPrel ′  is the generalized Kawasaki-Gunton projection ope-
rator depended on a structure of the relevant statistical opera-
tor (distribution function), );( txN

rel ′ρ . By using Zubarev’s 

NSO method [11], [12] and approach, ( )txN
rel ′;ρ  will be 

found from the extremum of the Renyi entropy at fixed valu-
es of observed values t

n xP α〉〈 )(ˆ , taking into account the nor-

malization condition 1=1 ,
t

relα〉〈 , where the nonequilibrium 
average values are found respectively [5],  
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tion .)),,(),,((=)()(ˆ
2
1

 jjjjjj xxfxxfxfxT +′+−′  
Accordingly, the average value, which is calculated with the 
relevant distribution function, is defined as  
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entropy functional  
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at fixed values of observed values t
n xP α〉〈 )(ˆ  and the condition 

of normalization 1=)(),(1,ˆ),(1,ˆ tNTNI ρα ′
 , the relevant 

distribution function takes the form  
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where )(tZR  is the partition function of the Renyi distribu-
tion, which is determined from the normalization condition 
and has the form  
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The Lagrangian multiplier γ  is determined by the normaliza-
tion condition. The parameters );( txFn  are determined from 
the self-consistency conditions  
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It is important to note that the relevant distribution function 
corresponded to the Gibbs entropy follows from (8) at 1=q  

[5]. In the general case of the parameters t
n xP α〉〈 )(ˆ  of the re-

duced description of nonequilibrium processes according to 
(5) and (8), we get NSO in the form  

,);()();(),()(

)(=)(

*)( tdtxFttxIttTexd

tt

nreln
tt

t

n

rel

′′′′′+ −′

∞−
∫∫∑ βρµ

ρρ

ε
α

  (11) 

where ,
)();()(1

);(=);(
1

*
t

nn
n

q
q

n
n

xPtxFxd
txFtxF

ααµ ′+

′
′

∫∑−
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are the generalized flows, )(tP  is the Mori projection opera-
tor [5], and the function )(tψ  has the following structure 
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 By using the nonequilibrium statistical operator (11), we 
get the generalized transport equation for the parameters 

t
n xP α〉〈 )(ˆ  of the reduced description,  

,);(),;,()(

)(ˆ=)(ˆ

*)(

,

tdtxFttxxexd

xPiLxP
t

nPP
tt

t

n

t
reln

t
n

nn
′′′′′′+

〉〈〉〈
∂
∂

′
−′

∞−′
′∫∫∑ βϕµ ε

α

ααα

  (13) 

where  

( ));();(),()(ˆ
),(1,ˆ),(1,ˆ=),;,(

txtxIttTxPiL

NTNIttxx
N

relnn

PP nn

′′′′×

′′

′

′

ρ

ϕ

α

α


           (14) 

are the generalized transport kernels (the memory functions), 
which describe dissipative processes in the system. To de-
monstrate the structure of the transport equations (13) and the 
transport kernels (14), we will consider, for example, diffu-
sion processes. In the next section, we obtain generalized 
transport equations with fractional derivatives and consider a 
concrete example of diffusion processes of the particle in 
non-homogeneous media. 

III. GENERALIZED DIFFUSION EQUATIONS WITH 
FRACTIONAL DERIVATIVES 

 One of main parameters of the reduced description to des-
cribe the diffusion processes of the particles in non-homo-
geneous media with fractal structure is the nonequilibrium 
density of the particle numbers, t

n xP α〉〈 )(ˆ : trntrn α〉〈 )(ˆ=);(  , 

where )(=)(ˆ
1= j
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j
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−∑ δ  is the microscopic density of the 

particles. The corresponding generalized diffusion equation 
for );( trn   can be obtained on base of Eqs. (8), (11), (13),  
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is the generalized coefficient diffusion of the particles within 
the Renyi statistics. Averaging in Eq. (16) is performed with 
the power-law Renyi distribution,  
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is the partition function of the relevant distribution function, 
H  is a Hamiltonian of the system, q  is the Renyi parameter 
( 1<0 <q ). 
 Parameter );( trν  is the chemical potential of the particles, 
which is determined from the self-consistency condition,  
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TkB1/=β  ( Bk  is the Boltzmann constant), T  is the equilib-

rium value of temperature, )(=)(ˆ
1= jj
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−∑ δ  is the mic-

roscopic flux density of the particles. At 1=q , the generali-
zed diffusion equation within the Renyi statistics goes into 
the generalized diffusion equation within the Gibbs statistics 
with fractional derivatives. If 1=q  and 1=α , we obtain the 
generalized diffusion equation within the Gibbs statistics. In 
the Markov approximation, the generalized coefficient of 
diffusion in time and space has the form 
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tain the diffusion equation with fractional derivatives from 
Eq. (15)  
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 The generalized diffusion equation takes into account spa-
tial fractality of the system and memory effects in the genera-
lized coefficient of diffusion ),;',( ttrrDq ′  within the Renyi 
statistics. Obviously, spatial fractality of system influences on 
transport processes of the particles that can show up as mul-
tifractal time with characteristic relaxation times. It is known 
that the nonequilibrium correlation functions ),;',( ttrrDq ′  
can not be exactly calculated, therefore the some approxima-
tions based on physical reasons are used. In the time interval 

t÷−∞ , ion transport processes in spatially non-homogeneous 
system can be characterized by a set of relaxation times that 
are associated with the nature of interaction between the par-
ticles and particles of media with fractal structure. To show 
the multifractal time in the generalized diffusion equation, we 
use the following approach for the generalized coefficient of 
particle diffusion  
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 Further we apply the Fourier transform to Eq. (22), and as 
a result we get in frequency representation  
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We can represent the frequency dependence of the memory 
function in the following form  
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where the introduced relaxation time aτ  characterizes the 
particles transport processes in the system. Then Eq. (24) can 
be represented as  
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 Further we use the Fourier transform to fractional derivati-
ves of functions,  
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By using it, the inverse transformation of Eq. (26) to time re-
presentation gives the Cattaneo-type generalized diffusion 
equation with taking into account spatial fractality,  
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which is the new Cattaneo-type generalized equation within 
the Renyi statistics with multifractal time and spatial frac-
tality. At 1=q  from Eq. (29), we get the Cattaneo-type gene-
ralized equation within the Gibbs statistics with multifractal 
time and spatial fractality,  
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 Eqs. (28), (29) contain significant spatial non-homogeneity 
in ),( rrDq

 ′ . If we neglect spatial non-homogeneity,  
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we get the Cattaneo-type diffusion equation with fractality of 
space-time and the constant coefficients of the diffusion 
within the Renyi statistics,  
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At 1=q , we get the Cattaneo-type diffusion equation with 
fractality of space-time and the constant coefficients of the 
diffusion within the Gibbs statistics,  
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It should be noted that if we put 1=α  in Eqs. (31), (32), i.e. 
we neglect spatial fractality, we get the Cattaneo-type diffusi-
on equations, which were obtained in Ref. [18],  
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 At 0=τ , we get an important particular case — the gene-
ralized diffusion equation of particles with taking into ac-
count fractality of space-time,  
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and by neglecting spatial non-homogeneity of the diffusion 
coefficients ),( rrDq

 ′ , we also get the diffusion equation 
with the constant coefficients of the diffusion with the 
fractional derivatives within the Renyi statistics,  
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 At 1=α , 0=τ , we get the diffusion equation with the 
constant coefficients of the diffusion without spatial fractality 
within the Renyi statistics  
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 At 1=α , 0=τ , 1=q , 1=ξ , we get the usual diffusion 
equation for the particles within the Gibbs statistics,  
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 Let us consider another model of the memory function  
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 then in frequency representation we get  
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By using Eq. (27) and inverse transformation of Eq. (39) to 
the time t , we get the generalized Cattaneo-type diffusion 
equation with taking into account multifractal time and 
spatial fractality.  

IV. CONCLUSION 
 We presented the general approach for obtaining the gene-
ralized transport equations with the fractional derivatives by 
using the Liouville equation with the fractional derivatives 
[14] for a system of classical particles and Zubarev’s NSO 
method within the Renyi statistics [5]. In this approach, the 
new non-Markov equations of diffusion of the particles in a 
spatially non-homogeneous medium with a fractal structure 
are obtained. 
 By using approaches for the memory functions and fractio-
nal calculus [1]–[5], the generalized Cattaneo-type diffusion 
equations with taking into account fractality of space-time are 
obtained. It is considered the different models for the fre-
quency dependent memory functions, which lead to the 
known diffusion equations with the fractality of space-time  
and their generalizations. 
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