<u>Макроэкономика</u>

Юрий МАКОГОН, Евгения МЕДВЕДКИНА

СТРАТЕГИЯ ИННОВАЦИОННОГО РАЗВИТИЯ УКРАИНЫ В КОНТЕКСТЕ ИНТЕГРАЦИИ В ЕВРОПЕЙСКИЙ СОЮЗ

Резюме

Рассмотрен вопрос совершенствования и повышения эффективности государственной политики в сфере международного научно-технического сотрудничества Украины с учетом интеграционных приоритетов государства, в том числе взаимодействия с ЕС.

Ключевые слова

Международное научно-техническое сотрудничество, инновационное развитие, международная интеграция, инновационный процесс, международное научно-техническое взаимодействие, европейское научное пространство.

Макогон Юрий, докт. экон. наук, профессор, заведующий кафедрой международной экономики Донецкого национального университета, директор РФ НИСИ в г. Донецк, заслуженный деятель науки и техники Украины.

Медведкина Евгения, канд. экон. наук, доцент кафедры международной экономики Донецкого национального университета, с. н. с. РФ НИСИ в г. Донецк, Украина.

[©] Юрий Макогон, Евгения Медведкина, 2008.

Классификация по JEL: F15; O30.

Глобализация мировой экономики является важным фактором современных экономических отношений, определяющим развитие мирового хозяйства на рубеже XXI века. Глобализация и дальше будет влиять на торговые отношения, финансовые потоки, научно-технический прогресс, глобальная окружающая среда, а поэтому будет требовать поиска динамического равновесия как на международном, так и на национальном уровнях.

Украина является пятой на европейском континенте по количеству населения и второй по размерам территории страной. По экономическим возможностям, интеллектуальному и научно-техническому потенциалу она принадлежит к развитым крупнейшим европейским государствам. Украинское общество должно использовать и реализовать свои потенциальные преимущества, найти свое достойное место на мировом рынке, занять ведущие позиции в тех сферах экономической деятельности, где имеются для этого условия.

Инновационное развитие требует от государства решения ряда задач в различных сферах деятельности субъектов хозяйствования, направленных на выявление отклонений от главной цели внутренних и внешних элементов деятельности, поиск и обоснование путей их приведения в гармоничное соответствие, имеющее целью создать условия для устойчивого социально-экономического развития как самого субъекта, так и общества в целом, особенно учитывая глобализационные процессы, набравшие обороты с середины 1990-х годов.

В условиях значительного ускорения темпов научно-технического прогресса и его превращения на основной фактор интенсивного экономического роста, огромное значение для национальных экономик, в частности, и мирового хозяйства в целом, имеет эффективность использования достижений науки и техники для решения задач стабильного развития. В связи с этим современные научные достижения и технологии обуславливают сегодня уровень экономического развития стран, степень их привлечения к международному распределению труда, положение в мировом содружестве, способность успешно решать различные социально-экономические проблемы.

В то же время, в научно-технической сфере, учитывая ее особенности и глобальную сущность, возможно быстрое получение и наиболее эффективное внедрение результатов лишь при условии тесного переплетения национальных потенциалов, объединения материальных и интеллектуальных ресурсов разных стран, распределения рисков и фронтов работы на

международном и глобальном уровнях. Эта особенность находит свое отображение в процессах международной интернационализации сферы науки и техники.

Инновационная по своему содержанию и характеру динамика развития современного мирового хозяйства, базирующаяся на факторах научнотехнического прогресса, требует от государств выбора соответствующих моделей экономического роста. Таким образом, перед экономикой Украины ставится важнейшая задача — переход на инновационный путь развития, основывающийся на внедрении достижений науки, техники и технологий во все сферы национального хозяйства.

В контексте развития и углубления процессов интернационализации мировой экономической и научно-технической сфер решающее значение в повышении эффективности реализации национальной стратегии инновационного развития Украины в контексте интеграции в Европейский Союз приобретает использование преимуществ международной научнотехнической интеграции.

Исследования характера и тенденций интернационализации мирового общества, в том числе в сфере науки и техники, осуществляются в работах таких отечественных ученых, как О. Г. Билорус, Б. Г. Губский, Д. Г. Лукьяненко, Ю. В. Макогон, А. М. Поручник, Е. В. Савельев, А. С. Филипенко и др. Вопросы научного обоснования инновационной стратегии развития Украины, эффективной реализации национального научнотехнического потенциала, а также проблем использования преимуществ международного сотрудничества в научно-технической сфере для решения задач национального и глобального развития находят отображение в исследованиях В. П. Александровой, Ю. М. Бажала, В. М. Гееца, В. О. Гусева, О. О. Лапко, Б. Е. Патона, В. П. Семиноженка и др.

Необходимость совершенствования и повышения эффективности государственной политики в сфере международного научно-технического сотрудничества Украины с учетом интеграционных приоритетов государства, в том числе взаимодействия с ЕС, как неотъемлемой составной механизма реализации стратегии инновационного развития национальной экономики, кажется на сегодня актуальной темой исследования.

Объектом исследования является процесс международной интеграции научно-технической сферы Украины в ЕС как источника обеспечения ускоренного интенсивного роста национальной экономики на основе инновационных факторов и важного направления эффективной интеграции государства в систему мирового хозяйства. Предметом исследования являются теоретические и прикладные аспекты осуществления международного интеграционного взаимодействия в сфере науки, техники и инноваций, совершенствования государственных механизмов активизации и повышения результативности этого процесса.

По оценкам экспертов Организации экономичного сотрудничества и развития (ОЭСР), в середине XX в. темпы экономического роста определялись прогрессом технологии на 38%, а к концу этого же века — уже на 65%. Общепринятым является мнение о том, что этот фактор обуславливает близко 75% прироста производительности труда, более 50% прироста национального дохода, существенно снижает себестоимость продукции. Согласно данным английской комиссии по трудовым ресурсам, 60% роста общей эффективности американской и японской промышленности осуществляется благодаря изменениям в технологии.

На сегодня в США и наиболее развитых странах Западной Европы 15-25% прироста ВВП происходит за счет роста высокотехнологической промышленности. В таких странах, как США и Япония, научно-техническая сфера обеспечивает 65–85% прироста национального дохода [1, 22]. Несмотря на то что исследованию значения и сущности инновационного процесса были посвящены работы многих, как зарубежных, так и отечественных, ученых, однозначного определения инновации на сегодня не существует.

Относительно сущности и содержания инновации можно определить два подхода. Сторонники первого из них, по-разному трактуя именно определение «инновации», подчеркивают ее научно-техническое происхождение [3, 4]. По мнению этих авторов, *инновация* — это использование результатов научных исследований и разработок, направленных на совершенствование процесса деятельности производства, экономических, правовых и социальных отношений в сфере науки, культуры, образования и других сфер деятельности общества.

Организация экономического сотрудничества и развития определяет инновацию как новое применение научных и технических знаний, обеспечивающих рыночный успех. Сторонники другого подхода считают, что *инновация* может базироваться не только на научных открытиях. Они рассматривают инновацию как воплощение новой идеи, практики или продукта, имеющего целью как чисто коммерческую направленность, так и удовлетворение других человеческих потребностей. В то же время, ученые, придерживающиеся такого подхода, также подчеркивают высокую значимость научно-технической емкости инновационного процесса.

Инновационная деятельность является чрезвычайно сложным процессом и зависит от разнообразных внешних условий (исторических, социально-экономических и т. д.), а также от цели, на достижение которой она направлена. Обзор природы инновационного процесса показывает, что развитие шло от простых линейных моделей к более сложным диалоговым [21; 55; 105; 161].

Таким образом, проведенное исследование позволило выделить несколько поколений моделей инновационного процесса (табл. 1).

 Таблица 1.

 Поколения моделей инновационного процесса

Период	Основные характеристики	
1950-тые – сере- дина 1960-х годов	Простая линейная модель инновационного процесса (simple linear model), подталкивающаяся технологией (technology push)	
Конец 1960-х – начало 1970-х годов	Линейная модель с учетом потребностей рынка	
Начало 1970-х – середина 1980-х годов	Модель взаимодействия (coupling model), в которой учитывается взаимодействие между различными эле- ментами и их связь	
Середина 1980-х – 1990-тые годы	Параллельная модель (parallel model), характеризует интеграцию внутри фирмы с поставщиками и покупателями	
Последние годы – будущее	Модель стратегической интеграции (systems integration). Гибкая реакция фирмы на изменения во внешней среде, непрерывный инновационный процесс	

Первое поколение (1955 год – середина 1960-х годов): модель технологического выталкивания (technology push model). Простой линейнопоследовательный процесс с определенным значением НИОКР и отношением к рынку лишь как к потребителю результатов технологической активности производства.

Второе поколение (конец 1960-х — начало 1970-х гг.): рыночно ориентирована линейно-последовательная модель (need pull model), с учетом повышения значимости рынка, на потребности которого реагирует НИОКР. Инновационный процесс второго поколения подталкивается необходимостью. Проиллюстрируем его схемой в приложении Б.

Третье поколение (начало 1970-х – середина 1980-х гг.): соединенная модель (coupling model). В значительной степени комбинация первого и второго поколений с акцентом на связь технологических способностей и возможностей с потребностями рынка. Третье поколение инновационного процесса проиллюстрируем схемой на рисунке в приложении Б.

Четвертое поколение (середина 1980-х до сегодняшнего времени) — это японская модель передового опыта. Отличается тем, что в ней акцентируется внимание на равнобежной деятельности интегрированных групп, внешние горизонтальные и вертикальные связи. Главное в этой модели — равнобежная деятельность. Одновременная работа над идеей нескольких групп специалистов, действующих в нескольких направлениях.

Пятое поколение: сегодня — будущее. Модель стратегических сетей (strategic networking model). Стратегическая интеграция и установление связей отличается тем, что к параллельному процессу добавляются новые функции. Это процесс ведения НИОКР с использованием систем вычислительной техники и информатики, при помощи которых устанавливаются стратегические связи. Новаторы обмениваются электронными данными с поставщиками, партнерами и потребителями. Однако маркетинг является не конечным этапом, а собственно его началом. Он продолжается на всем пути от фундаментальных исследований к обслуживанию готовой продукции после ее реализации.

Эволюция подходов к моделированию инновационного развития ведет к все большему перекрещиванию процессов разработки новой техники и технологий, что, в свою очередь, ведет к сокращению как общей продолжительности, так и продолжительности отдельных стадий инновационного цикла. Стратегическая интеграция и установление связей с использованием систем вычислительной техники и информатики на современной стадии эволюции подходов к стратегии инновационного развития способствуют обмену информацией о новейших научных разработках, с одной стороны, и требованиях, предложенных рынком — с другой.

Международные научно-технические отношения на современном этапе получают глубокое развитие в сфере взаимодействия наукоемких или высокотехнологических отраслей, реализации национальных потенциалов на мировом наукоемком рынке. В соответствии с классификацией ОЭСР в зависимости от характера производства и особенностей отрасли выделяют такие типы технологий: высокие, средне высокие, средне низкие и низкие технологии.

Объединение усилий разных стран и их субъектов в научнотехнической сфере может происходить на разных уровнях (рис. 1). Для каждого из этих уровней характерна собственная система форм и механизмов осуществления международного взаимодействия в сфере разработки, передачи и использования научных знаний и технических достижений.

Совокупность всех уровней с их характеристиками составляет целостный механизм взаимодействия национальной научно-технической сферы с мировым пространством, ее включение в мировой рынок высокотехнологических товаров и наукоемких услуг.

В то же время, направленность, характер и глубина всех сфер взаимодействия определяется на государственном уровне, который отвечает за эффективную реализацию предпосылок и создание благоприятной среды для осуществления международной научно-технической взаимопомощи.

Таблица 2.

Периодизация основных волн инновационного развития (по Н. Кондратьеву, Й. Шумпетеру, С. Фримену) [4]

Длинные волны / цик-			Инфрас	Универ-	
Часовые рамки	лы Характе- ристика цикла	Состояние науки и об- разования	Транспорт и связь	Энергия	сальный дешевый ресурс
Первый 1780— 1840 гг.	промыш- ленная ре- волюция: фабричное производ- ство тек- стиля	обучение на рабочем месте, уни- верситеты и научные общества	каналы грунтовые дороги	гидро- энергия	хлопок
Второй 1840— 1890 гг.	цикл пара и желез- ных дорог	массовое начальное образова- ние, первые технические вузы, инже- неры	железные дороги, телеграф	энергия пара	уголь, железо
Третий 1890– 1940 гг.	цикл элек- тричества и стали	первые ДР лаборато- рии в кор- порациях, технические стандарты	железные дороги, телефон	электри- чество	сталь
Четвер- тый 1940– 1990 гг.	цикл авто- мобилей и синтетиче- ских мате- риалов	бурный рост в корпора- циях и в госсекторе, массовый доступ к высшему образова- нию	автостра- ды, авиа- линии, радио и телевиде- ние	нефть	нефть, пласт- массы
Пятый 1990 г. – до сего- дня	компью- терная ре- волюция	глобальные ДР сети, бессрочное образова- ние и про- фессио- нальное обучение	информа- ционные сети, Ин- тернет	газ/нефть	микро- электро- ника

Рисунок 1.

Уровни осуществления международного научно-технического взаимодействия

Сейчас ЕС в среднем направляет на НИОКР 1,9% ВВП, в то время как США - 2,64, Япония - 3,04% (только в некоторых европейских странах этот показатель выше - в Швеции (3,6%), Финляндии (3,1%)). В 2001 г. ЕС выделило на НИОКР в отрасли медицинских технологий, авиации, фармацевтики и других наукоемких сфер 166,6 млрд дол., а США - 285,6 млрд дол. Если в США доля частного сектора в общих затратах на НИОКР составляет 68,2%, то в ЕС - 56,3% [5].

Такое неоднозначное состояние ЕС по основным конкурентам объясняется несбалансированностью единого западноевропейского рынка, что не позволяет наиболее эффективно использовать затраты на НИОКР, внедрять и реализовывать разработанные продукты, высокой прибылью в сфере средне технологического экспорта, имитационной стратегией в производстве многих компаний региона. Задачами ЕНП выступают: создание неразделенного национальными границами научного пространства, обеспечение максимально эффективного использования научного потенциала и

материальных ресурсов стран EC с учетом накопленного опыта и достижений, на основе тесной взаимосвязи региональной и национальной научнотехнической политики, обмена знаниями и информацией, а также содействие мобильности научных кадров. Более подробно цели, задачи и механизмы реализации программы отображены на рис. 2.

Рисунок 2.

Матрица целей европейского научного пространства, задачи и механизмы их реализации

		Цели европейского научного пространства							
		Усовер- шенство- вание ев- ропейский усилий в сфере ис- следова- ний	Наращ вание т нологич ского иннован онного тенциа ЕС	ех- че- и ци- по-	ние е пейс	ской ора-	ев ско во для техн и и	иление пропей- й кадро- й базы научно- ической оннова- сфер	Создание в европейском мас- штабе новых отношений между наукой и обществом
ИВ	Научная деятель- ность	Создание на сетей и коорд реализации нальных про	Объединение в сети передовых исследовательских центров, представителей государственного и частного сектора			ова- в, осу-	Реализация мас- штабных исследова- тельских проектов		
	Наука и ин- новации, предвари- тельная стадия и средний и малый биз- нес	Поддержка и ваний, котор водятся в ин среднего и и бизнес	Распространение и трансфер знаний и технологий				Внедрение научных результатов и создание технологических производств		
Задания	Инфра- структура науки	Реализация стратеги	фере пользование и создание и нфраструктуры			ание научной			
	Кадровые ресурсы	Усиление трансгра- ничной мо- бильности кадровых ресурсов	Развити систем европе ской нау ной кари ры	іы й- уч-	чес	пиче- «оли- тва щин	ти: вь пр те: про мо уче	роприя- я по по- ишению ивлека- пьности офессии олодого ного для лодежи	Повышение привлекательности Европы для ученых из третьих стран
	Наука, об- щество и граждане	Укрепление связи между наукой, поли- тикой и обществен- ными нуждами		Внедрение принци- пов предупреждения и постоянного разви- тия		РИН	Предупреждение социальных и этических последствий научно-технического прогресса		

Для максимальной эффективности достижения поставленных целей ЕНП будет открыт для всех стран мира. Предусматривается, что если сегодня ЕС контролирует 4% научных исследований, проведенных в Европе, то к 2010 г. он будет контролировать 80% [5].

Органом ЕС, который инициирует и осуществляет управление научно-техническими программами, является Комиссия Европейского Союза (КЕС). Специальные программы КЕС структурированные по тематическому принципу, имеют похожие общие условия участия (рабочие программы) и специфические условия, обусловленные Генеральными Директоратами КЕС – инициаторами программ. Структура основных Директоратов КЕС представлена такими подразделениями: «Промышленность», «Сельское хозяйство», «Транспорт», «Окружающая среда», «Наука», «Информационные технологии и телекоммуникации», «Рыбный промысел», «Региональное развитие», «Энергетика», «Образование».

Следовательно, несмотря на то что каждой страной отдельно теоретически учитывается высокая значимость международного сотрудничества в сфере науки и техники, мировые тенденции общего научно-технического развития продолжают опираться на принципы самостоятельности и противостояния.

Наибольшим наукоемким потенциалом владеют сегодня 5 стран мира: США, Япония, Германия, Франция и Англия. Они контролируют 80% мирового рынка высоких технологий. На этом рынке постоянно ведется жесткая конкурентная борьба. Как следствие, США, начиная с 80-х гг., утратили приоритет в некоторых отраслях, что привело к утрате ими соответствующих сегментов рынка. Удельный вес Японии, наоборот, значительно увеличился благодаря стремительной экспансии производителей высокотехнологической продукции лучшего качества по более низкой цене. В последнее десятилетие к признанным лидерам в области высоких технологий приближаются новые государства с Азиатско-Тихоокеанского региона -Южная Корея, Малайзия, Сингапур, Гонконг.

Темпы роста производства в высокотехнологических отраслях за период 1995—2005 гг. составляли: в США — 59%, в Японии — 25%, в ЕС (перечислено для ЕС-25) — 31%, в КНР — 103%, в Южной Корее — 195%. Наблюдается явная тенденция к увеличению ассигнований в НИОКР в развитых странах. Так, США увеличили инвестиции в исследовании и разработке за период 1995—2005 гг. на 46%, Япония — на 27%, ЕС (перечислено для ЕС-25) — на 18%. Высокие темпы роста капиталовложений в НИОКР демонстрируют некоторые развивающиеся страны и развитые государства с небольшими относительными объемами средств, направляющимися правительством на науку и инновационную деятельность, а именно: Финляндия, Греция, Израиль и Венгрия.

Анализ географии поставок высокотехнологических изделий свидетельствует о великих пробелах в отечественной стратегии завоевания пер-

спективных рынков. Доказательством этого являются очень небольшие объемы трансфера высокотехнологических товаров с американского континента, стран Близкого Востока, Южно-Восточной Азии и Африки и значительное доминирование Российской Федерации как по экспортным, так и импортным операциям.

Рассматривая опыт ЕС, можно сделать вывод, что для выхода на инновационный путь развития приоритетными в XXI в. должны стать такие направления науки, как прикладная математика и методология программирования, новая энергетика, автоматизация, фармакология, комплексная экология, научные и технологические основы приборостроения, теория развития общества, основанного на знаниях, биология и генная инженерия, компьютерная индустрия, информатизация и т. д.

Государственная инновационная политика направленная на создание благоприятного экономического климата для осуществления инновационных процессов и является соединительным звеном между сферой академической науки и задачами производства. Эта политика должна обеспечивать развитие научно-технического потенциала, формирования современных технологических укладов в отрасли экономики, выталкивание устаревших укладов и повышение конкурентоспособности продукции.

К основным направлениям государственной политики Украины в сфере инновационной деятельности можно отнести: совершенствование организационно-правовой среды по осуществлению инновационной деятельности; создание системы комплексной поддержки инновационной деятельности на всех этапах ее осуществления на общенациональном и региональном уровнях; развитие инновационно-инвестиционной инфраструктуры.

На современном этапе научно-техническая сфера проходит четвертый этап своего становления в рамках независимого государства, характеризующегося ослаблением отрицательных тенденций. В то же время, для дальнейшей стабилизации и развития украинской науки и техники необходимо выработать государственную стратегию, позволяющую наиболее эффективно использовать национальные и внешние факторы. Стратегия государства в отрасли науки и техники являет собой совокупность глобальных долгосрочных целей и задач национального научно-технического развития, на основе которых осуществляется разработка и реализация основных направлений и механизмов научно-технической политики.

Научно-техническая политика государства, будучи системой взаимозависимых государственных мер для эффективного решения основных задач и комплексного развития научно-технической сферы, содержит в себе основные цели, принципы, направления и способы влияния государства на участников научно-технической и инновационной деятельности, в том числе в сфере международного научно-технического сотрудничества [5].

В контексте мировых научно-технических и экономических процессов и современной стабилизации украинского общества и экономики формирования национальной научно-технической стратегии приобретает высокую значимость. Учитывая то, что в Украине до сих пор не проводилось целенаправленной государственной научно-технической политики, а советский опыт регулирования этой сферы утратил актуальность, перед государством стоит важнейшая задача — формирование комплексной научно-технической стратегии, соответствующей современным потребностям общества и экономики, современному этапу НТП и мировым приоритетам.

Всесторонняя проверенная научно-техническая стратегия, базирующаяся на принципах использования национального потенциала в сфере науки, техники и производства и учитывает современные интернациональные тенденции развития мирового содружества, особенности современного этапа НТП, государственные интересы и требования национальной безопасности, должна стать основой быстрого интенсивного роста украинской экономики.

Такая стратегия должна касаться всех видов научно-технической деятельности: фундаментальных, прикладных исследований, научно-технических разработок. Все эти виды, различаясь вероятностью получения положительного результата (5–10% в фундаментальных исследованиях, до 80% — в прикладных) и часовым периодом между возникновением идеи и ее реализацией в конкретных разработках, дают значительный эффект.

Среди *целей реализации стратегии* Украины в сфере науки, техники, инноваций можно определить такие:

- 1. Быстрый экономический рост и решение важнейших проблем и задач социально-экономического развития государства на основе научнотехнических и инновационных механизмов.
- 2. Активизация участия Украины в процессе развития современного этапа НТП и использования его достижений на практике.
- 3. Обеспечение национальной безопасности Украины (научнотехнической, энергетической, военной и т.д.).
- 4. Трансформация структуры национального хозяйства, в частности, за счет повышения роли высокотехнологических и наукоемких отраслей.
- 5. Возобновление и реструктуризация существующих отраслей и производств и создание новых на основе современных достижений науки и техники.
- 6. Увеличение доли высокотехнологических и наукоемких отраслей и отраслей, изготовляющих готовую продукцию в структуре украинского экспорта.

- 7. Повышение уровня конкурентоспособности отечественной науки и технологий, выход Украины на мировой рынок интеллектуальных продуктов, наукоемких товаров и услуг.
- 8. Эффективный качественный и количественный рост национального научно-технического потенциала в соответствии с требованиями национальной экономики и динамики развития мирового хозяйства.
- 9. Повышение эффективности и глубины вовлечения Украины в процесс интернационализации мирового хозяйства (в сфере науки, технологий и наукоемкого производства).
- 10. Увеличение роли регионов Украины в выполнении общенациональных задач экономического и научно-технического развития в соответствии с их потребностями и потенциалом.
- 11. Улучшение качества жизни населения Украины, ликвидация безработицы трудоспособного населения, сохранение национальных кадров и прекращение «утечки мозгов» и т. д.

Следовательно, основной целью стратегии государства в контексте формирования инновационных основ национального развития является создание новой системы организации, координации и управления НТП, который комплексно сочетает развитие науки и техники с экономическими процессами, с целью ускорения интенсивного роста национальной экономики и обеспечения повышения ее конкурентоспособности, улучшения качества жизни населения, обеспечения безопасности государства.

Международное научно-техническое сотрудничество допускает осуществление Украиной вместе с иностранными государствами и международными организациями научно-технической деятельности в рамках межгосударственных, межправительственных и межведомственных соглашений о научно-техническом сотрудничестве. В осуществлении такой деятельности принимают участие научные организации, общественные объединения ученых, отдельные ученые и специалисты Украины и иностранных государств.

Выбор государством направлений, форм и методов международного научно-технического сотрудничества в значительной степени зависит от общих геополитических и геоэкономических тенденций, интересов национальной безопасности и задач развития национальной экономики и науки. На структуру целей и задач государственной политики Украины в сфере международного научно-технического сотрудничества непосредственно или косвенно влияет значительное количество внутренних и внешних факторов, связанных с тенденциями развития мировой экономики, ускорением НТП, предоставлением научно-техническими факторам решающей роли в экономическом росте, изменением характера конкуренции на мировых рынках и т. д. Главными целями государственной политики в сфере международного научно-технического сотрудничества должны быть: повышение

конкурентоспособности отечественной продукции на внешних рынках, увеличение экспорта высокотехнологической и наукоемкой продукции, регулирования технологического обмена, сокращение технологической отсталости страны и т. д.

Таблица 3.
Показатели реализации национального научно-технического потенциала Украины на современном этапе

Положительные показатели	Отрицательные показатели
Украина принадлежит к восьми странам мира, имеющим научно-технический потенциал для создания современной авиакосмической техники Входит в 10 наибольших судостроительных государств мира	Доля украинской наукоемкой продукции на мировом рынке высокотехнологической продукции составляет лишь близко 0,16%
Доля занятых в высоко- и среднетехнологических отраслях промышленности суммарна со странами ЕС	Производительность труда в высоко- и среднетехнологических отраслях промышленности Украины в несколько раз ниже за страны ЕС
По индексу конкурентоспособности государство занимает 38 место в рейтинге 80 стран (2003 г.)	По индексу роста конкурентоспо- собности страна занимает лишь 77 место в рейтинге 80 стран (2003 г.) По индексу развития технологий Украина занимает лишь 72 место в рейтинге 80 стран (2003 г.) По индексу развития информаци- онно-коммуникационных техноло- гий занимает лишь 62 место в рей- тинге 80 стран (2003 г.)
По индексу развития человеческого потенциала страна занимает 76 место из 173 стран (2003 г.)	По показателю оплаты труда высококвалифицированных специалистов занимает 44 место среди 46 европейских стран
Индекс уровня образования населения Украины равен 0,93 и в некоторой степени превышает средний индекс стран Восточной Европы и СНГ (0,92) По количеству сертифицированных программистов занимает 4 место в мире (после США, Индии и России)	По доступу населения к телекоммуникационным технологиям Украина занимает 84 место среди 178 исследованных стран

Основа разработки и реализации принципов и механизмов государственной политики в отрасли регулирования национального научнотехнического сотрудничества Украины заложена в нормативно-правовой базе в сфере регулирования общей среды для осуществления деятельности в сфере науки и техники, формирования рынка интеллектуальной собственности и защиты его объектов; различных международных соглашений, договорах, программах организации международной многостороннего и двустороннего взаимодействия Украины с международными организациями, иностранными государствами и их субъектами, заключающиеся на общегосударственных, отраслевых, региональных уровнях.

Литература

- 1. Александрова В. П. Довгострокові перспективи формування та інноваційного використання науково-технічних пріоритетів // Проблеми науки. 2004. № 12. С. 20—26.
- 2. Бажал Ю. М. Економіка інноваційних процесів // Вісник Інституту економічного прогнозування НАН України. 2003. №1. С. 3—17.
- 3. Гальчинський А., Геєць В., Семиноженко В. Україна: наука та інноваційний розвиток. К., 1997. 66 с.
- 4. Макогон Ю. В., Медведкин Т. С. Подходы к формированию инновационных преимуществ экономики Украины // Розвиток науковотехнологічних парків та інноваційних структур інших типів. Львів: ЛвЦНТЕІ, 2003. С. 18—23.
- 5. Фірстов С., Левіна Д., Патрах Т., Чернишов Л. Рамкові програми Євросоюзу в контексті створення єдиного наукового простору // Вісник НАН України. 2004. № 5. С. 35–44.

Статья поступила в редакцию 28 января 2008 г.